Patents by Inventor Christophe Jaquerod

Christophe Jaquerod has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220389557
    Abstract: The present invention relates to plates with a thickness of between 8 and 50 mm and made from aluminum alloy with a composition, as % by weight, Si: 0.7-1.3; Mg: 0.6-1.2; Mn: 0.65-1.0; Fe: 0.05-0.35; at least one element selected from Cr: 0.1-0.3 and Zr: 0.06-0.15; Ti<0.15; Cu<0.4; Zn<0.1; other elements <0.05 each and <0.15 in total, the remainder aluminum, and the method for manufacturing same. The plates according to the invention are particularly useful as precision plates, in particular for producing elements of machines, for example assembly or inspection equipment. The plates according to the invention have improved dimensional stability in particular during the machining steps, while having sufficient static mechanical properties, and excellent suitability for anodizing.
    Type: Application
    Filed: September 29, 2020
    Publication date: December 8, 2022
    Inventors: Sylvie ARSENE, Petar RATCHEV, Nicolas CALABRETTO, Christophe JAQUEROD
  • Patent number: 10308998
    Abstract: An armor component produced from a 7xxx series aluminum alloy, wherein the aluminum alloy consists essentially of: 8.4 wt. %?Zn?10.5 wt. %; 1.3 wt. %?Mg?2 wt. %; 1.2 wt. %?Cu?2 wt. %; at least one dispersoid forming element with a total dispersoid forming element content higher than 0.05 wt. %; the remainder substantially aluminum, incidental elements and impurities.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 4, 2019
    Assignees: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, CONSTELLIUM VALAIS SA
    Inventors: Jack Franklin, Christophe Jaquerod, Michael Niedzinski
  • Publication number: 20170218487
    Abstract: An armor component produced from a 7xxx series aluminum alloy, wherein the aluminum alloy consists essentially of: 8.4 wt. %?Zn?10.5 wt. %; 1.3 wt. %?Mg?2 wt. %; 1.2 wt. %?Cu?2 wt. %; at least one dispersoid forming element with a total dispersoid forming element content higher than 0.05 wt. %; the remainder substantially aluminum, incidental elements and impurities.
    Type: Application
    Filed: March 3, 2015
    Publication date: August 3, 2017
    Inventors: Jack FRANKLIN, Christophe JAQUEROD, Michael NIEDZINSKI
  • Publication number: 20140311326
    Abstract: Armor panel comprising an aluminium alloy plate wherein: a) said aluminium alloy has the following chemical composition expressed in percentages per weight: 5.1%?Zn?9.7% 1.5%?Mg?2.9% 1.2%?Cu?2.1% Si?0.4% Fe?0.5% Mn?0.3% Cr?0.28% Ti?0.2% Zr?0.15% b) said plate comprises a face oriented towards the shocks and a face opposite said face oriented towards the shocks coated with a composite reinforcing layer comprising reinforcing fibres or bands with high ballistic protection performance, typically made of high mechanical performance glass, aramid or high performance polyethylene.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Applicant: CONSTELLIUM VALAIS SA (AG-Ltd)
    Inventors: Christophe JAQUEROD, Louis BOOGH, Carlos Comet SAEZ
  • Patent number: 7901522
    Abstract: An aluminium alloy having high mechanical strength and low quench sensitivity comprising 4.6 to 5.2 wt. % Zn, 2.6 to 3.0 wt. % Mg, 0.1 to 0.2 wt. % Cu, 0.05 to 0.2 wt. % Zr, max. 0.05 wt. % Mn, max. 0.05 wt. % Cr, max. 0.15 wt. % Fe, max. 0.15 wt. % Si, max. 0.10 wt. % Ti and aluminium as the remainder along with production related impurities, individually max. 0.05 wt. %, in total max. 0.15 wt. %. A process for producing plates having a thickness of more than 300 mm for manufacturing moulds for injection-moulding plastics is made up of the following steps: continuous casting the alloy into ingots having a thickness greater than 300 mm, heating the ingots to a temperature of 470 to 490° C. with a max. heating rate of 20° C./h between 170 and 410° C., homogenising the ingots for 10 to 14 h at a temperature of 470 to 490° C., cooling the ingots in still air to an intermediate temperature of 400-410° C., cooling the ingots by means of forced air cooling from the intermediate temperature of 400-410° C.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 8, 2011
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Gunther Hollrigl, Christophe Jaquerod
  • Publication number: 20090223608
    Abstract: An aluminium alloy having high mechanical strength and low quench sensitivity comprising 4.6 to 5.2 wt. % Zn, 2.6 to 3.0 wt. % Mg, 0.1 to 0.2 wt. % Cu, 0.05 to 0.2 wt. % Zr, max. 0.05 wt. % Mn, max. 0.05 wt. % Cr, max. 0.15 wt. % Fe, max. 0.15 wt. % Si, max. 0.10 wt. % Ti and aluminium as the remainder along with production related impurities, individually max. 0.05 wt. %, in total max. 0.15 wt. %. A process for producing plates having a thickness of more than 300 mm for manufacturing moulds for injection-moulding plastics is made up of the following steps: continuous casting the alloy into ingots having a thickness greater than 300 mm, heating the ingots to a temperature of 470 to 490° C. with a max. heating rate of 20° C./h between 170 and 410° C., homogenising the ingots for 10 to 14 h at a temperature of 470 to 490° C., cooling the ingots in still air to an intermediate temperature of 400-410° C., cooling the ingots by means of forced air cooling from the intermediate temperature of 400-410° C.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 10, 2009
    Applicant: ALCAN TECHNOLOGY & MANAGEMENT LTD.
    Inventors: Gunther Hollrigl, Christophe Jaquerod
  • Publication number: 20060096676
    Abstract: An aluminium alloy having high mechanical strength and low quench sensitivity comprising 4.6 to 5.2 wt. % Zn, 2.6 to 3.0 wt. % Mg, 0.1 to 0.2 wt. % Cu, 0.05 to 0.2 wt. % Zr, max. 0.05 wt. % Mn, max. 0.05 wt. % Cr, max. 0.15 wt. % Fe, max. 0.15 wt. % Si, max. 0.10 wt. % Ti and aluminium as the remainder along with production related impurities, individually max. 0.05 wt. %, in total max. 0.15 wt. %. A process for producing plates having a thickness of more than 300 mm for manufacturing moulds for injection-moulding plastics is made up of the following steps: continuous casting the alloy into ingots having a thickness greater than 300 mm, heating the ingots to a temperature of 470 to 490° C. with a max. heating rate of 20° C./h between 170 and 410° C., homogenising the ingots for 10 to 14 h at a temperature of 470 to 490° C., cooling the ingots in still air to an intermediate temperature of 400-410° C., cooling the ingots by means of forced air cooling from the intermediate temperature of 400-410° C.
    Type: Application
    Filed: December 20, 2003
    Publication date: May 11, 2006
    Inventors: Gunther Hollrigl, Christophe Jaquerod