Patents by Inventor Christopher A. Craven
Christopher A. Craven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150160144Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.Type: ApplicationFiled: February 19, 2015Publication date: June 11, 2015Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Ian C. Shay, Christopher A. Craven, David C. Grundy, Volker Weiss, Andrew P. Washabaugh
-
Patent number: 8981018Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.Type: GrantFiled: March 14, 2005Date of Patent: March 17, 2015Assignee: Jentek Sensors, Inc.Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Ian C. Shay, Christopher A. Craven, David C. Grundy, Volker Weiss, Andrew P. Washabaugh
-
Patent number: 7812601Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.Type: GrantFiled: June 15, 2009Date of Patent: October 12, 2010Assignee: JENTEK Sensors, Inc.Inventors: Neil J. Goldfine, Andrew P. Washabaugh, Yanko K. Sheiretov, Darrell E. Schlicker, Robert J. Lyons, Mark D. Windoloski, Christopher A. Craven, Vladimir B. Tsukernik, David C. Grundy
-
Publication number: 20100026285Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.Type: ApplicationFiled: June 15, 2009Publication date: February 4, 2010Applicant: Jentek Sensors, Inc.Inventors: Neil J. Goldfine, Andrew P. Washabaugh, Yanko K. Sheiretov, Darrell E. Schlicker, Robert J. Lyons, Mark D. Windoloski, Christopher A. Craven, Vladimir B. Tsukernik, David C. Grundy
-
Patent number: 7451657Abstract: Methods are described for assessing material condition. These methods include the use of multiple source fields for interrogating and loading of a multicomponent test material. Source fields include electric, magnetic, thermal, and acoustic fields. The loading field preferentially changes the material properties of a component of the test material, which allows the properties of the component materials to be separated. Methods are also described for monitoring changes in material state using separate drive and sense electrodes with some of the electrodes positioned on a hidden or even embedded material surface. Statistical characterization of the material condition is performed with sensor arrays that provide multiple responses for the material condition during loading. The responses can be combined into a statistical population that permits tracking with respect to loading history.Type: GrantFiled: January 14, 2005Date of Patent: November 18, 2008Assignee: JENTEK Sensors, Inc.Inventors: Neil J. Goldfine, Darrell E. Schlicker, Vladimir A. Zilberstein, Andrew P. Washabaugh, Volker Weiss, Christopher A. Craven, Ian C. Shay, David C. Grundy, Karen E. Walrath, Robert J. Lyons
-
Patent number: 7188532Abstract: Observability of damage precursor, damage and usage states, or event occurrence may be enhanced by modifying component materials to include self-monitoring materials or by processing test material to alter the surface properties. The properties of the self monitoring materials, such as magnetic permeability or electrical conductivity, are monitored with electromagnetic sensors and provide greater property variations with component condition than the original component material. Processing includes shot peening or laser welding.Type: GrantFiled: September 8, 2004Date of Patent: March 13, 2007Assignee: Jentek Sensors, Inc.Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, David C. Grundy, Andrew P. Washabaugh, Darrell E. Schlicker, Ian C. Shay, Robert J. Lyons, Christopher A. Craven, Christopher Root, Mark D. Windoloski, Volker Weiss
-
Patent number: 6562761Abstract: Methods for preparing thick film rare-earth Ba2Cu3O7-&dgr; (such as YBCO) superconductive layers, particularly including deposition of a precursor as a dispersion of solid-state materials, including a binder or a solvent or both constituents. The solid-state materials include oxides, fluorides, and acetates of yttrium, barium, and copper in the form of ultrafine particles.Type: GrantFiled: February 9, 2000Date of Patent: May 13, 2003Assignee: American Superconductor CorporationInventors: Leslie G. Fritzemeier, Christopher A. Craven, Cornelis Leo Hans Thieme
-
Publication number: 20020142918Abstract: A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.Type: ApplicationFiled: February 26, 2002Publication date: October 3, 2002Applicant: American Superconductor CorporationInventors: Gilbert N. Riley, Qi Li, Peter R. Roberts, Peter D. Antaya, Jeffrey M. Seuntjens, Steven Hancock, Kenneth L. DeMoranville, Craig J. Christopherson, Jennifer H. Garrant, Christopher A. Craven
-
Patent number: 6370405Abstract: A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.Type: GrantFiled: July 29, 1997Date of Patent: April 9, 2002Assignee: American Superconductor CorporationInventors: Gilbert N. Riley, Jr., Qi Li, Peter R. Roberts, Peter D. Antaya, Jeffrey M. Seuntjens, Steven Hancock, Kenneth L. DeMoranville, Craig J. Christopherson, Jennifer H. Garrant, Christopher A. Craven
-
Patent number: 6219901Abstract: A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.Type: GrantFiled: November 6, 1996Date of Patent: April 24, 2001Assignee: American Superconductor CorporationInventors: Eric R. Podtburg, Kenneth H. Sandhage, Alexander Otto, Lawrence J. Masur, Christopher A. Craven, Jeffrey D. Schreiber
-
Patent number: 5851957Abstract: A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.Type: GrantFiled: August 5, 1993Date of Patent: December 22, 1998Assignee: American Superconductor CorporationInventors: Eric R. Podtburg, Kenneth H. Sandhage, Alexander Otto, Lawrence J. Masur, Christopher A. Craven, Jeffrey D. Schreiber
-
Patent number: 5321003Abstract: An autogenous superconducting joint metallurgically bonding a pair of shaped superconducting pieces. Each of the pieces is formed by combining the metallic elements of a superconducting oxide in substantially the stoichiometric proportions needed to form the superconducting oxide, and then forming the combined metallic elements into a shaped piece. The microstructure of the joint is substantially the same as that of the portions of the pieces adjacent the joint.Type: GrantFiled: September 18, 1991Date of Patent: June 14, 1994Assignee: American Superconductor CorporationInventors: Chandrashekhar H. Joshi, Christopher A. Craven
-
Patent number: 5116810Abstract: The invention relates to a process for making a superconducting connection between a pair of superconducting ceramic oxide pieces, each of the pieces having been formed by combining the metallic elements of the superconducting oxide in substantially the stoichiometric proportions needed to form the superconducting oxide into a precursor and forming the precursor into a shaped piece. The process comprises the steps of: contacting each of the shaped pieces with the other; connecting each of the shaped pieces to the other by means for forming a metallurgical bond between the shaped pieces; and oxidizing the connected shaped pieces under conditions sufficient to oxidize the metallic elements to the superconducting oxide.In other embodiments of the invention, the process is for forming a superconducting connection between a pair of pieces having a superconducting ceramic oxide/noble metal composition; or for forming a joint between a superconducting ceramic oxide and a normal conductor.Type: GrantFiled: October 16, 1989Date of Patent: May 26, 1992Assignee: American Superconductor CorporationInventors: Chandrashekhar H. Joshi, Christopher A. Craven