Patents by Inventor Christopher A. Schuetz

Christopher A. Schuetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240056186
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. The system and method involves recording with photodetectors the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Publication number: 20230420841
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Patent number: 11838050
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. In some examples, the system and method may record the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: December 5, 2023
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 11784406
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: October 10, 2023
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Publication number: 20230291167
    Abstract: An RF pulse generator may comprise a pair of phase-locked lasers that output optical tones offset in frequency by a set amount. The resulting optical signal is periodically transmitted and blocked by an optical switch to generate a pulsed optical signal. A photodiode is irradiated with the pulsed optical signal to generate a corresponding pulsed RF signal having a frequency corresponding to the frequency difference of the optical tones generated by the phase-locked lasers. An antenna may be connected to and driven by the photodiode to electromagnetically transmit the pulsed RF signal.
    Type: Application
    Filed: March 13, 2023
    Publication date: September 14, 2023
    Inventors: Victoria Carey, Charles Harrity, Eliezer Shahid, Matthew Konkol, Christopher Schuetz, Peng Yao, Dennis Prather
  • Patent number: 11405113
    Abstract: A hyperspectral radiometer may comprise one or more antennas, a electro-optical modulator modulating the received RF signal onto an optical carrier to generate a modulated signal having at least one sideband; a filter filtering the modulated signal to pass the sideband to a photodetector; and a photodetector producing an electrical signal from which information of the RF signal can be extracted. In some examples, the optical sideband may be spatially dispersed to provide a plurality of spatially separate optical components to the photodetector, where the spatially separate optical components having different frequencies and correspond to different frequencies of the received RF signal. In some examples, the passed sideband may be mixed with an optical beam having a frequency offset from the optical carrier to form a combined beam having at least one optical signal component having a beat frequency from which information of the RF signal can be extracted.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 2, 2022
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Tom Dillon, Christopher Schuetz, Dennis Prather
  • Publication number: 20220149520
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 12, 2022
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Patent number: 11205843
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: December 21, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Publication number: 20210367678
    Abstract: A hyperspectral radiometer may comprise one or more antennas, a electro-optical modulator modulating the received RF signal onto an optical carrier to generate a modulated signal having at least one sideband; a filter filtering the modulated signal to pass the sideband to a photodetector; and a photodetector producing an electrical signal from which information of the RF signal can be extracted. In some examples, the optical sideband may be spatially dispersed to provide a plurality of spatially separate optical components to the photodetector, where the spatially separate optical components having different frequencies and correspond to different frequencies of the received RF signal. In some examples, the passed sideband may be mixed with an optical beam having a frequency offset from the optical carrier to form a combined beam having at least one optical signal component having a beat frequency from which information of the RF signal can be extracted.
    Type: Application
    Filed: February 5, 2021
    Publication date: November 25, 2021
    Inventors: Tom Dillon, Christopher Schuetz, Dennis Prather
  • Publication number: 20210242941
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. In some examples, the system and method may record the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Application
    Filed: January 18, 2021
    Publication date: August 5, 2021
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 10917178
    Abstract: A hyperspectral radiometer may comprise one or more antennas, a electro-optical modulator modulating the received RF signal onto an optical carrier to generate a modulated signal having at least one sideband; a filter filtering the modulated signal to pass the sideband to a photodetector; and a photodetector producing an electrical signal from which information of the RF signal can be extracted. In some examples, the optical sideband may be spatially dispersed to provide a plurality of spatially separate optical components to the photodetector, where the spatially separate optical components having different frequencies and correspond to different frequencies of the received RF signal. In some examples, the passed sideband may be mixed with an optical beam having a frequency offset from the optical carrier to form a combined beam having at least one optical signal component having a beat frequency from which information of the RF signal can be extracted.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: February 9, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Tom Dillon, Christopher Schuetz, Dennis Prather
  • Patent number: 10897309
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 19, 2021
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Publication number: 20190372219
    Abstract: An RF receiver may include antenna elements to receive RF signals, and electro-optic modulators to generate corresponding upconverted optical signals by mixing an RF signal with an optical carrier beam. The RF receiver may include a transmission array having a first bundle of optical waveguides that receive and transmit upconverted optical signals from their ends. The ends may be arranged in a first pattern. The RF receiver may include an interference space to receive the upconverted optical signals to form a composite beam, and an array of single mode optical fibers that have lenses positioned in a detection plane to receive a portion of the composite beam. The first pattern of the ends generates an RF emitter interference pattern at the detection plane, and the single mode optical fiber lenses have a geometric arrangement that corresponds to the first RF emitter interference pattern.
    Type: Application
    Filed: May 1, 2019
    Publication date: December 5, 2019
    Inventors: Garrett Schneider, Christopher Schuetz, Janusz Murakowski, Tom Dillon, Shouyuan Shi, Dennis Prather
  • Publication number: 20190305849
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 3, 2019
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Publication number: 20190296831
    Abstract: A hyperspectral radiometer may comprise one or more antennas, a electro-optical modulator modulating the received RF signal onto an optical carrier to generate a modulated signal having at least one sideband; a filter filtering the modulated signal to pass the sideband to a photodetector; and a photodetector producing an electrical signal from which information of the RF signal can be extracted. In some examples, the optical sideband may be spatially dispersed to provide a plurality of spatially separate optical components to the photodetector, where the spatially separate optical components having different frequencies and correspond to different frequencies of the received RF signal. In some examples, the passed sideband may be mixed with an optical beam having a frequency offset from the optical carrier to form a combined beam having at least one optical signal component having a beat frequency from which information of the RF signal can be extracted.
    Type: Application
    Filed: March 26, 2019
    Publication date: September 26, 2019
    Inventors: Tom Dillon, Christopher Schuetz, Dennis Prather
  • Publication number: 20190190599
    Abstract: An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. The system and method involves recording with photodetectors the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 10313012
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: June 4, 2019
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Publication number: 20180309515
    Abstract: A system and method reconstructs RF sources in k-space by utilizing interference between RF signals detected by an array of antennas. The system and method may include detecting an RF interference pattern resulting from interference between RF signals in an RF coupler, where the RF signals are detected by the antennas and provided to the RF coupler by RF waveguides. The RF waveguides may have unequal RF path lengths. K-space information of the RF sources may be reconstructed from the detected RF interference pattern using known tomography reconstruction methods.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventors: Janusz Murakowski, Christopher Schuetz, Garrett Schneider, Shouyuan Shi
  • Patent number: 10055959
    Abstract: The present disclosure is directed to systems and methods that use 1 GHz to 1000 GHz sources and sensors to create an intrusion detection array that does not have the physical limitations of an Active IR sensor. The array is created by a plurality of wave sources and sensor pairs that form a plane of wave break beams. The plane detects an intruder as he/she passes through the beams.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 21, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: John L. Russell, Dennis Prather, Christopher Schuetz
  • Patent number: 9544510
    Abstract: An apparatus and method may be used to create images, e.g., three-dimensional images, based on received radio-frequency (RF), e.g., millimeter wave, signals carrying image data. The RF signals may be modulated onto optical carrier signals, and the resulting modulated optical signals may be cross-correlated. The resulting cross-correlations may be used to extract image data that may be used to generate three-dimensional images.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: January 10, 2017
    Assignee: Phase Sensitive Innovations, Inc.
    Inventors: Janusz Murakowski, Garrett Schneider, Shouyuan Shi, Christopher A. Schuetz, Dennis W. Prather