Patents by Inventor Christopher Albert Babin

Christopher Albert Babin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11732581
    Abstract: A method includes positioning a downhole acquisition tool in a wellbore in a geological formation. The method includes operating a pump module to gather information for a fluid outside of the downhole acquisition tool that enters the downhole acquisition tool from a first flowline, a second flowline, or both while the downhole acquisition tool is within the wellbore. Operating the pump module includes controlling a valve assembly to a first valve configuration that enables the fluid to flow into the downhole tool via the first flowline fluidly coupled to a first pump module.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: August 22, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Miroslav Slapal, Christopher Albert Babin, Daniel Palmer, Kai Hsu, Anthony Robert Holmes Goodwin, Julian Pop, Nathan Mathew Landsiedel, Adriaan Gisolf
  • Patent number: 11725511
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure include obtaining a sample of formation fluid using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 15, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Publication number: 20220412180
    Abstract: Devices, systems and methods for cutting openings in a wellbore tubular by a slot cutting assembly having an anchoring system and a slot cutting tool. The anchoring assembly anchors the slot cutting assembly within the wellbore. The slot cutting tool has an extendable cutting blade that is pushed into the wellbore tubular to cut an opening through the tubular. The slot cutting tool may have an extendable stabilizing arm to stabilize and assist with cutting by the blade. The slot cutting assembly may have azimuth and depth sensors to assist with positioning the tool at a desired position downhole. A surface system may be used to control the position of the slot cutting assembly downhole.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 29, 2022
    Inventors: Joshua Wurtz, Joseph Matthew Casassa, Christopher Albert Babin, Robert Kyle Wiesenborn, Pierre-Arnaud Foucher, David Engel, Todor Sheiretov
  • Publication number: 20220003114
    Abstract: A method includes positioning a downhole acquisition tool in a wellbore in a geological formation. The method includes operating a pump module to gather information for a fluid outside of the downhole acquisition tool that enters the downhole acquisition tool from a first flowline, a second flowline, or both while the downhole acquisition tool is within the wellbore. Operating the pump module includes controlling a valve assembly to a first valve configuration that enables the fluid to flow into the downhole tool via the first flowline fluidly coupled to a first pump module.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Inventors: Miroslav Slapal, Christopher Albert Babin, Daniel Palmer, Kai Hsu, Anthony Robert Holmes Goodwin, Julian Pop, Nathan Mathew Landsiedel, Adriaan Gisolf
  • Publication number: 20210388722
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure, are provided. In one example, a sample of formation fluid is obtained using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Patent number: 11125081
    Abstract: A method includes positioning a downhole acquisition tool in a wellbore in a geological formation. The method includes operating a pump module to gather information for a fluid outside of the downhole acquisition tool that enters the downhole acquisition tool from a first flowline, a second flowline, or both while the downhole acquisition tool is within the wellbore. Operating the pump module includes controlling a valve assembly to a first valve configuration that enables the fluid to flow into the downhole tool via the first flowline fluidly coupled to a first pump module.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 21, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Miroslav Slapal, Christopher Albert Babin, Daniel Palmer, Kai Hsu, Anthony Robert Holmes Goodwin, Julian Pop, Nathan Mathew Landsiedel, Adriaan Gisolf
  • Patent number: 11105198
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure include obtaining a sample of formation fluid using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 31, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Patent number: 10941656
    Abstract: Apparatus and methods for performing downhole testing. Example apparatus include a downhole tool string for conveying within a wellbore, the downhole tool string comprising an anchor device, a testing device, and a linear or rotary actuator. The anchor device maintains a portion of the downhole tool string in a predetermined position within the wellbore. The testing device is operable to receive a downhole sample from or test a subterranean formation surrounding the wellbore. The linear actuator is connected between the anchor device and testing device, and moves the testing device relative to the anchor device.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 9, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: German Garcia, Hadrien Dumont, Christopher Albert Babin, Li Chen, Vinay K. Mishra
  • Patent number: 10132164
    Abstract: Systems and methods for obtaining in-situ measurements of mixed formation fluids are provided. A downhole acquisition tool may move to a first station in a wellbore in a geological formation to collect a sample of first formation fluid from the first station. The downhole acquisition tool may move to a second station in the wellbore and a sample of second formation fluid may be collected. A proportion of the first formation fluid and the second formation fluid may be mixed within the downhole acquisition tool in-situ while the downhole acquisition tool is within the wellbore to obtain a formation fluid mixture. The formation fluid mixture may be passed into a fluid testing component of the downhole acquisition tool while the downhole acquisition tool is in the wellbore to measure fluid properties of the formation fluid mixture in-situ.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 20, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Abhishek Agarwal, Adriaan Gisolf
  • Publication number: 20180216458
    Abstract: Apparatus and methods for performing downhole testing. Example apparatus include a downhole tool string for conveying within a wellbore, the downhole tool string comprising an anchor device, a testing device, and a linear or rotary actuator. The anchor device maintains a portion of the downhole tool string in a predetermined position within the wellbore. The testing device is operable to receive a downhole sample from or test a subterranean formation surrounding the wellbore. The linear actuator is connected between the anchor device and testing device, and moves the testing device relative to the anchor device.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 2, 2018
    Inventors: German Garcia, Hadrien Dumont, Christopher Albert Babin, Li Chen, Vinay K. Mishra
  • Publication number: 20180119547
    Abstract: A method includes positioning a downhole acquisition tool in a wellbore in a geological formation. The method includes operating a pump module to gather information for a fluid outside of the downhole acquisition tool that enters the downhole acquisition tool from a first flowline, a second flowline, or both while the downhole acquisition tool is within the wellbore. Operating the pump module includes controlling a valve assembly to a first valve configuration that enables the fluid to flow into the downhole tool via the first flowline fluidly coupled to a first pump module.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Inventors: Miroslav Slapal, Christopher Albert Babin, Daniel Palmer, Kai Hsu, Anthony Robert Holmes Goodwin, Julian Pop, Nathan Mathew Landsiedel, Adriaan Gisolf
  • Publication number: 20170284197
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure, are provided. In one example, a sample of formation fluid is obtained using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Publication number: 20170175524
    Abstract: Systems and methods for obtaining in-situ measurements of mixed formation fluids are provided. A downhole acquisition tool may move to a first station in a wellbore in a geological formation to collect a sample of first formation fluid from the first station. The downhole acquisition tool may move to a second station in the wellbore and a sample of second formation fluid may be collected. A proportion of the first formation fluid and the second formation fluid may be mixed within the downhole acquisition tool in-situ while the downhole acquisition tool is within the wellbore to obtain a formation fluid mixture. The formation fluid mixture may be passed into a fluid testing component of the downhole acquisition tool while the downhole acquisition tool is in the wellbore to measure fluid properties of the formation fluid mixture in-situ.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Abhishek Agarwal, Adriaan Gisolf