Patents by Inventor Christopher Allen Long

Christopher Allen Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10695892
    Abstract: A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: June 30, 2020
    Assignee: DIAMOND INNOVATIONS, INC.
    Inventors: Andrew Gledhill, Christopher Allen Long, Valeriy Konovalov
  • Patent number: 10232493
    Abstract: Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise a non-catalyst material, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise non-catalyst material that coats portions of the adjacent diamond grains such that the non-catalyst material reduces contact between the diamond and the catalyst.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 19, 2019
    Assignee: Diamond Innovations, Inc.
    Inventors: Christopher Allen Long, Andrew Gledhill
  • Publication number: 20190055788
    Abstract: Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise lead or lead alloy, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise lead or lead alloy that coat portions of the adjacent diamond grains such that the lead or lead alloy reduces contact between the diamond and the catalyst.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 21, 2019
    Applicant: Diamond Innovations, Inc.
    Inventors: Christopher Allen Long, Andrew Gledhill
  • Patent number: 10167675
    Abstract: Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise lead or lead alloy, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise lead or lead alloy that coat portions of the adjacent diamond grains such that the lead or lead alloy reduces contact between the diamond and the catalyst.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: January 1, 2019
    Assignee: Diamond Innovations, Inc.
    Inventors: Christopher Allen Long, Andrew Gledhill
  • Patent number: 9920578
    Abstract: A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: March 20, 2018
    Assignee: DIAMOND INNOVATIONS, INC.
    Inventors: Andrew Gledhill, Christopher Allen Long
  • Publication number: 20160325404
    Abstract: Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise a non-catalyst material, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise non-catalyst material that coats portions of the adjacent diamond grains such that the non-catalyst material reduces contact between the diamond and the catalyst.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 10, 2016
    Inventors: Christopher Allen Long, Andrew Gledhill
  • Publication number: 20160326809
    Abstract: Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise lead or lead alloy, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise lead or lead alloy that coat portions of the adjacent diamond grains such that the lead or lead alloy reduces contact between the diamond and the catalyst.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 10, 2016
    Inventors: Christopher Allen Long, Andrew Gledhill
  • Publication number: 20160008955
    Abstract: A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
    Type: Application
    Filed: December 24, 2014
    Publication date: January 14, 2016
    Inventors: Andrew GLEDHILL, Christopher Allen LONG
  • Publication number: 20150367482
    Abstract: A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a dopant as evaluated prior to a high pressure/high temperature process. The dopant may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
    Type: Application
    Filed: December 24, 2014
    Publication date: December 24, 2015
    Inventors: Andrew GLEDHILL, Christopher Allen LONG, Valeriy Konovalov
  • Patent number: 9216492
    Abstract: A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal and a plurality of particles. The plurality of particles may be included within the superabrasive crystal. The plurality of particles may comprise a non-catalyst material.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 22, 2015
    Assignee: Diamond Innovations, Inc.
    Inventors: Kai Zhang, Christopher Allen Long
  • Publication number: 20140157681
    Abstract: A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal and a plurality of particles. The plurality of particles may be included within the superabrasive crystal. The plurality of particles may comprise a non-catalyst material.
    Type: Application
    Filed: July 26, 2013
    Publication date: June 12, 2014
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventors: Kai Zhang, Christopher Allen Long
  • Patent number: 6887144
    Abstract: An element-doped diamond crystal is disclosed herein. The crystal includes at least one dopant element which has a greater concentration toward or near an outermost surface of the crystal than in the center of the crystal. The concentration of the dopant element is at a local minimum at least about 5 micrometers below the surface. The concentration-profile of the dopant element for these diamond crystals causes an expansion of the diamond lattice, thereby generating tangential compressive stresses at the surface of the diamond crystal. These stresses beneficially increase the compressive fracture strength of the diamond.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: May 3, 2005
    Assignee: Diamond Innovations, Inc.
    Inventors: Mark Philip D'Evelyn, Dong-Sil Park, Thomas Richard Anthony, Clifford Lawrence Spiro, Yue Meng, Christopher Allen Long
  • Publication number: 20010043903
    Abstract: An element-doped diamond crystal is disclosed herein. The crystal includes at least one dopant element which has a greater concentration toward or near an outermost surface of the crystal than in the center of the crystal. The concentration of the dopant element is at a local minimum at least about 5 micrometers below the surface. The concentration-profile of the dopant element for these diamond crystals causes an expansion of the diamond lattice, thereby generating tangential compressive stresses at the surface of the diamond crystal. These stresses beneficially increase the compressive fracture strength of the diamond.
    Type: Application
    Filed: February 14, 2001
    Publication date: November 22, 2001
    Inventors: Marl Philip D'Evelyn, Dong-Sil Park, Thomas Richard Anthony, Clifford Lawrence Spiro, Yue Meng, Christopher Allen Long