Patents by Inventor Christopher B. McILroy

Christopher B. McILroy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10399007
    Abstract: A temperature swing adsorption apparatuses and process is disclosed comprising passing a feed stream to a first adsorption bed to adsorb one or more contaminants from the feed stream to produce a product stream. A regeneration gas separator overhead stream is passed to a second adsorption bed to provide a second adsorption bed effluent stream. The second adsorption bed effluent stream is passed to a heater to generate a hot regeneration effluent stream. The hot regeneration effluent stream is passed to a third adsorption bed to regenerate the third adsorption bed and provide a regeneration effluent stream. At least a portion of the regeneration effluent stream is passed to a guard bed to remove sulfur and oxygen compounds to provide a treated regeneration effluent stream. The treated regeneration effluent stream is passed to a regeneration gas separator to provide the regeneration gas separator overhead stream.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 3, 2019
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Publication number: 20180126299
    Abstract: A temperature swing adsorption apparatuses and process is disclosed comprising passing a feed stream to a first adsorption bed to adsorb one or more contaminants from the feed stream to produce a product stream. A regeneration gas separator overhead stream is passed to a second adsorption bed to provide a second adsorption bed effluent stream. The second adsorption bed effluent stream is passed to a heater to generate a hot regeneration effluent stream. The hot regeneration effluent stream is passed to a third adsorption bed to regenerate the third adsorption bed and provide a regeneration effluent stream. At least a portion of the regeneration effluent stream is passed to a guard bed to remove sulfur and oxygen compounds to provide a treated regeneration effluent stream. The treated regeneration effluent stream is passed to a regeneration gas separator to provide the regeneration gas separator overhead stream.
    Type: Application
    Filed: August 25, 2017
    Publication date: May 10, 2018
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 9517431
    Abstract: A process for reducing the size of sulfur removal units is presented. The process includes passing a regeneration gas from a regenerated contaminant adsorption unit through a fixed bed adsorber. The fixed bed adsorber adsorbs sulfur compounds above an equilibrium condition and releases adsorbed sulfur compounds below the equilibrium condition. The peak levels of sulfur in the regeneration gas are reduced and the processing of the regeneration gas reduces the size of sulfur removal units.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: December 13, 2016
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 9422496
    Abstract: A process for treating a gas stream, such as natural gas, comprising a process design that prevents the formation of undesired sulfur and sulfates from the reaction of oxygen and sulfur is disclosed. After water is removed from the gas stream, a portion of the dried gas stream is sent through a cooled adsorbent bed that has a first layer to remove sulfur compounds and then a layer to remove oxygen. There may be additional layers of adsorbent to remove other contaminants. The gas stream that is then heated to regenerate an adsorbent bed no longer contains sulfur and oxygen and undesirable reactions of sulfur and oxygen are avoided.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 23, 2016
    Assignee: UOP LLC
    Inventors: Keith R. Clark, Christopher B. McIlroy, Michael E. Clark, Ali Hatami, Shain-Jer Doong
  • Publication number: 20160145518
    Abstract: A process for treating a gas stream, such as natural gas, comprising a process design that prevents the formation of undesired sulfur and sulfates from the reaction of oxygen and sulfur is disclosed. After water is removed from the gas stream, a portion of the dried gas stream is sent through a cooled adsorbent bed that has a first layer to remove sulfur compounds and then a layer to remove oxygen. There may be additional layers of adsorbent to remove other contaminants. The gas stream that is then heated to regenerate an adsorbent bed no longer contains sulfur and oxygen and undesirable reactions of sulfur and oxygen are avoided.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 26, 2016
    Inventors: Keith R. Clark, Christopher B. McIlroy, Michael E. Clark, Ali Hatami, Shain-Jer Doong
  • Publication number: 20160082382
    Abstract: A process for reducing the size of sulfur removal units is presented. The process includes passing a regeneration gas from a regenerated contaminant adsorption unit through a fixed bed adsorber. The fixed bed adsorber adsorbs sulfur compounds above an equilibrium condition and releases adsorbed sulfur compounds below the equilibrium condition. The peak levels of sulfur in the regeneration gas are reduced and the processing of the regeneration gas reduces the size of sulfur removal units.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 24, 2016
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 8936669
    Abstract: A temperature swing adsorption system includes a first adsorption bed configured to receive a feed stream and adsorb a contaminant from the feed stream to produce a product stream, a second adsorption bed configured to receive a portion of the product stream and a cooling stream to reduce a temperature of the second adsorption bed, a third adsorption bed configured to receive the heated product stream to increase a temperature of the third adsorption bed; a separation system to separate the cooled product stream into a first component stream and a second component stream, and a fourth adsorption bed configured to receive the first component stream and to enrich an adsorptive concentration of the first component stream. The enriched first component stream is directed to the second adsorption bed to provide the cooling stream.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Publication number: 20140366446
    Abstract: Systems and methods for gas separation are disclosed. In one exemplary embodiment, a method for gas separation includes the steps of contacting a feed gas stream that includes a product gas and an impurity gas with a liquid-phase absorption solvent and absorbing the impurity gas and a portion of the product gas of the feed gas stream into the liquid-phase absorption solvent. The exemplary method further includes the steps of subjecting the liquid-phase absorption solvent to a first reduced pressure environment to remove the portion of the product gas and a portion of the impurity gas from the liquid-phase absorption solvent and separating the portion of the product gas from the portion of the impurity gas.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Bhargav Sharma, Christopher B. McIlroy, Ernest James Boehm, David Farr, Nagaraju Palla
  • Publication number: 20140326136
    Abstract: A temperature swing adsorption system includes a first adsorption bed configured to receive a feed stream and adsorb a contaminant from the feed stream to produce a product stream, a second adsorption bed configured to receive a portion of the product stream and a cooling stream to reduce a temperature of the second adsorption bed, a third adsorption bed configured to receive the heated product stream to increase a temperature of the third adsorption bed; a separation system to separate the cooled product stream into a first component stream and a second component stream, and a fourth adsorption bed configured to receive the first component stream and to enrich an adsorptive concentration of the first component stream. The enriched first component stream is directed to the second adsorption bed to provide the cooling stream.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Inventors: Shain-Jer Doong, Christopher B. McIlroy
  • Patent number: 8814984
    Abstract: A gas purification process for treating a gas stream includes supplying the gas stream to at least one membrane unit to produce a permeate stream and a retentate stream. The retentate stream contains a lower concentration of at least one of water, hydrogen sulfide, or carbon dioxide as compared to the gas stream. The retentate stream is supplied to a molecular sieve unit to remove hydrogen sulfide to produce a treated gas product stream.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: August 26, 2014
    Assignee: UOP LLC
    Inventors: Christopher B. McIlroy, John R. Harness, Nagaraju Palla, Ronald K. Subris, Stephen J. Van Dyke
  • Publication number: 20130298765
    Abstract: A gas purification process for treating a gas stream includes supplying the gas stream to at least one membrane unit to produce a permeate stream and a retentate stream. The retentate stream contains a lower concentration of at least one of water, hydrogen sulfide, or carbon dioxide as compared to the gas stream. The retentate stream is supplied to a molecular sieve unit to remove hydrogen sulfide to produce a treated gas product stream.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: UOP LLC
    Inventors: Christopher B. McILroy, John R. Harness, Nagaraju Palla, Ronald K. Subris, Stephen J. Van Dyke