Patents by Inventor Christopher Bevis

Christopher Bevis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110172952
    Abstract: One embodiment relates to a method in which a measuring apparatus is used to collect a first set of wave form data which depends on micro-structure of a moving surface. A correspondence is identified between the first set of wave form data and actual position data. Calibrated wave form data is stored which indicates said correspondence between the first set of wave form data and actual position data. In addition, the measuring apparatus may be used to collect a second set of wave form data which depends on micro-structure of the moving surface, a cross-correlation may be computed between the second set of wave form data and the calibrated wave form data. Another embodiment relates to an apparatus for measuring position and/or motion using surface micro-structure of a moving surface. Another embodiment relates to method for measuring motion using surface micro-structure. Other embodiments and features are also disclosed.
    Type: Application
    Filed: October 5, 2009
    Publication date: July 14, 2011
    Inventors: Upendra UMMETHALA, Noah BAREKET, Christopher BEVIS
  • Publication number: 20080094630
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. In one embodiment, a method for determining overlay between a plurality of first structures in a first layer of a sample and a plurality of second structures in a second layer of the sample is disclosed. Targets A, B, C and D that each include a portion of the first and second structures are provided. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb between its first and second structures portions; target C is designed to have an offset Xc between its first and second structures portions; and target D is designed to have an offset Xd between its first and second structures portions. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd.
    Type: Application
    Filed: December 21, 2007
    Publication date: April 24, 2008
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Walter Mieher, Ady Levy, Boris Golovanesky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher Bevis, John Fielden, Noah Bareket, Kenneth Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus Dziura, Mark Ghinovker
  • Publication number: 20080024766
    Abstract: Disclosed is a method for determining an overlay error between at least two layers in a multiple layer sample. An imaging optical system is used to measure a plurality of measured optical signals from a plurality of periodic targets on the sample. The targets each have a first structure in a first layer and a second structure in a second layer. There are predefined offsets between the first and second structures. A scatterometry overlay technique is then used to analyze the measured optical signals of the periodic targets and the predefined offsets of the first and second structures of the periodic targets to thereby determine an overlay error between the first and second structures of the periodic targets.
    Type: Application
    Filed: July 30, 2007
    Publication date: January 31, 2008
    Inventors: Walter Mieher, Ady Levy, Boris Golovanesky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher Bevis, Mark Ghinovker
  • Publication number: 20080013083
    Abstract: Methods and systems for determining a characteristic of a wafer are provided. One method includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The method also includes determining the characteristic of the wafer using the second output. One system includes an inspection subsystem configured to illuminate the wafer and to generate output responsive to light from the wafer. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The system also includes a processor configured to determine the characteristic of the wafer using the second output.
    Type: Application
    Filed: February 9, 2007
    Publication date: January 17, 2008
    Inventors: Michael Kirk, Christopher Bevis, David Adler, Kris Bhaskar
  • Publication number: 20070081154
    Abstract: A dark field surface inspection tool and system are disclosed herein. The tool includes an illumination source capable of scanning a light beam onto an inspection surface. Light scattered by each inspection point is captured as image data by a photo detector array arranged at a fourier plane. The images captured are adaptively filtered to remove a portion of the bright pixels from the images to generate filtered images. The filtered images are then analyzed to detect defects in the inspection surface. Methods of the invention include using die-to-die comparison to identify bright portions of scattering patterns and generate unique image filters associated with those patterns. The associated images are then filtered to generate filtered images which are then used to detect defects. Also, data models of light scattering behavior can be used to generate filters.
    Type: Application
    Filed: December 20, 2005
    Publication date: April 12, 2007
    Inventors: Evan Mapoles, Grace Chen, Christopher Bevis, David Shortt
  • Publication number: 20060232770
    Abstract: A system for inspecting specimens such as semiconductor wafers is provided. The system provides scanning of dual-sided specimens using a damping arrangement which filters unwanted acoustic and seismic vibration, including an optics arrangement which scans a first portion of the specimen and a translation or rotation arrangement for translating or rotating the specimen to a position where the optics arrangement can scan the remaining portion(s) of the specimen. The system further includes means for stitching the scans together, thereby providing both damping of the specimen and the need for smaller and less expensive optical elements.
    Type: Application
    Filed: March 1, 2006
    Publication date: October 19, 2006
    Inventors: Paul Sullivan, George Kren, Rodney Smedt, Hans Hansen, David Shortt, Daniel Kavaldjiev, Christopher Bevis
  • Publication number: 20060148383
    Abstract: Systems and methods for detecting a presence of blobs on a specimen are provided. One method may include scanning measurement spots across a specimen during polishing of the specimen. The method may also include determining if the blobs are present on the specimen at the measurement spots. Each of the blobs may include unwanted material disposed upon a contiguous portion of the measurement spots. In some instances, the blobs may include copper. In some embodiments, scanning the measurement spots may include measuring an optical property and/or an electrical property of the specimen at the measurement spots. Another embodiment includes dynamically determining a signal threshold distinguishing a presence of the blobs from an absence of the blobs. An additional embodiment includes determining an endpoint of polishing if, for example, blobs are not determined to be present on the specimen.
    Type: Application
    Filed: February 24, 2006
    Publication date: July 6, 2006
    Inventors: Kurt Lehman, Charles Chen, Ronald Allen, Robert Shinagawa, Anantha Sethuraman, Christopher Bevis, Thanassis Trikas, Haiguang Chen, Ching Meng
  • Publication number: 20060141376
    Abstract: Methods and systems for controlling variation in dimensions of patterned features across a wafer are provided. One method includes measuring a characteristic of a latent image formed in a resist at more than one location across a wafer during a lithography process. The method also includes altering a parameter of the lithography process in response to the characteristic to reduce variation in dimensions of patterned features formed across the wafer by the lithography process. Altering the parameter compensates for non-time varying spatial variation in a temperature to which the wafer is exposed during a post exposure bake step of the lithography process and an additional variation in the post exposure bake step.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 29, 2006
    Inventors: Ady Levy, Michael Hanna, Dan Wack, John Fielden, Christopher Bevis, Larry Wagner
  • Publication number: 20060131273
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Application
    Filed: February 14, 2006
    Publication date: June 22, 2006
    Inventors: Kurt Lehman, Charles Chen, Ronald Allen, Robert Shinagawa, Anantha Sethuraman, Christopher Bevis, Thanassis Trikas, Haiguang Chen, Ching Meng
  • Publication number: 20060082767
    Abstract: An inspection tool embodiment includes an illumination source for directing a light beam onto a workpiece to generate scattered light that includes the ordinary scattering pattern of the workpiece as well as light scattered from defects of the workpiece. The embodiment includes a programmable light selection array that receives light scattered from the workpiece and selectively directs the light scattered from defects onto a photosensor which detects the defect signal. Processing circuitry receives the defect signal and conducts surface analysis of the workpiece that can include the characterizing of defects of the workpiece. The programmable light selection arrays can include, but are not limited to, reflector arrays and filter arrays. The invention also includes associated surface inspection methods.
    Type: Application
    Filed: December 7, 2005
    Publication date: April 20, 2006
    Inventors: Christopher Bevis, Paul Sullivan, David Shortt, George Kren
  • Publication number: 20050160394
    Abstract: Design driven inspection/metrology methods and apparatus are provided. A recipe is a set of instructions including wafer processing parameters, inspection parameters, or control parameters for telling an inspection/metrology system how to inspect/measure a wafer. Design data is imported into a recipe extraction system that recognizes instances of target structures and configures recipe parameters accordingly, thereby reducing manual instrument setup time, improving inspection/measurement accuracy, and improving fabrication efficiency.
    Type: Application
    Filed: March 10, 2005
    Publication date: July 21, 2005
    Inventor: Christopher Bevis
  • Publication number: 20050018179
    Abstract: An inspection tool embodiment includes an illumination source for directing a light beam onto a workpiece to generate scattered light that includes the ordinary scattering pattern of the workpiece as well as light scattered from defects of the workpiece. The embodiment includes a programmable light selection array that receives light scattered from the workpiece and selectively directs the light scattered from defects onto a photosensor which detects the defect signal. Processing circuitry receives the defect signal and conducts surface analysis of the workpiece that can include the characterizing of defects of the workpiece. The programmable light selection arrays can include, but are not limited to, reflector arrays and filter arrays. The invention also includes associated surface inspection methods.
    Type: Application
    Filed: November 14, 2003
    Publication date: January 27, 2005
    Inventors: Christopher Bevis, Paul Sullivan, David Shortt, George Kren
  • Patent number: 6770879
    Abstract: An apparatus for recording a series of images of a sample over a period of time while varying at least one image parameter. An electron microscope captures images of the sample and also varies the at least one image parameter. A controller triggers the electron microscope to sense multiple images of the sample and also controls the electron microscope to vary the at least one image parameter. An image recorder receives the sensed multiple images and also stores the sensed multiple images as the series of images. A display unit displays the series of images.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: August 3, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Amir Azordegan, Christopher Bevis, Bharat Marathe, David R. Bakker