Patents by Inventor Christopher Biele

Christopher Biele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9492665
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 15, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160271405
    Abstract: Systems, devices and methods for providing neuromodulation are provided. One such system can include an implantable pulse generator. The implantable pulse generator can include a circuit board having a microcontroller that generates signals that are input into an ASIC. The ASIC serves as pulse generator that allows electrical pulses to be outputted into leads. The implantable pulse generator is capable of receiving and/or generating signals either via a wireless communication (e.g., a wireless remote control), a touching force (e.g., pressure from a finger), a motion sensor or any combination of the above.
    Type: Application
    Filed: February 16, 2016
    Publication date: September 22, 2016
    Inventors: Raghavendra Angara, Miles Curtis, Christopher Biele, Saif Khalil, Jason Highsmith
  • Patent number: 9440076
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: September 13, 2016
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160250471
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9308369
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 12, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9302108
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 5, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9278216
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 8, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160015981
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. The high frequency generator can also independently control the pulse frequency of each channel according to the stored parameters. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals at different frequencies in different channels according to user programming in order to provide maximum flexibility in treatment.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20160015976
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20160015980
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals in different channels according to user programming.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20160015977
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20160015982
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes an electrode driver for each electrode, which adjusts the amplitude of the timing signals and output an output current corresponding to the adjusted signals for transmission to the associated electrode so as to enable independent amplitude control of the stimulation signals for each stimulation pattern channel.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20150321002
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: July 6, 2015
    Publication date: November 12, 2015
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9101768
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 11, 2015
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20150196763
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: March 25, 2015
    Publication date: July 16, 2015
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20150174415
    Abstract: A wireless charger for inductively charging a rechargeable battery of an implantable pulse generator (IPG) is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. The alignment circuit continuously detects a reflected impedance of the charging coil through a reflected impedance sensor, and controls a vibrator to output a tactile signal which is indicative of the alignment of the charging coil to the receiving coil based on the detected reflected impedance. Advantageously, the tactile feedback to the patient provides an optimal way to indicate the extent of the charger's alignment with the IPG.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20150180271
    Abstract: A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20150174416
    Abstract: A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Raghavendra Angara, Saif Khalil, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20140277265
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: GLOBUS MEDICAL, INC
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20140277264
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth