Patents by Inventor Christopher Bowers

Christopher Bowers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190303119
    Abstract: At least one application may include instructions comprising application instructions and a plurality of separate pipeline definition instructions. The application instructions may be within a virtual container including at least one program that is generically executable in a plurality of different continuous integration and delivery (CI/CD) environments. Each of the plurality of separate pipeline definition instructions may be configured for each of the plurality of different CI/CD environments such that each pipeline definition may operate only in the CI/CD environment for which it is created. Each pipeline definition may be configured to cause the CI/CD environment for which it is created to execute the at least one program.
    Type: Application
    Filed: March 18, 2019
    Publication date: October 3, 2019
    Applicant: Capital One Services, LLC
    Inventors: Brandon Atkinson, Christopher Bowers, Dallas Edwards
  • Patent number: 10431719
    Abstract: A color-conversion structure includes an article comprising a color-conversion material disposed within a color-conversion layer. At least a portion of a tether is within or extends from the article. The color-conversion structure can be disposed over a sacrificial portion of a substrate to form a micro-transfer printable device and micro-transfer printed to a display substrate. The color-conversion structure can include an light-emitting diode or laser diode that is over or under the article. Alternatively, the article is located on a side of a display substrate opposite an inorganic light-emitting diode. A display includes an array of color-conversion structures disposed on a display substrate.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: October 1, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl
  • Patent number: 10431487
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 1, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10416425
    Abstract: CPV modules include a back plate having an array of 1 mm2 or smaller solar cells thereon. A backplane interconnect network is also provided on the back plate. This backplane interconnect network operates to electrically connect the array of solar cells together. A front plate, which is spaced-apart from the back plate, is provided. This front plate includes an array of primary lenses thereon that face the array of solar cells. The front plate can be configured to provide a greater than 1000× lens-to-cell light concentration to the array of solar cells. To achieve this 1000× lens-to-cell light concentration, the primary lenses can be configured as plano-convex lenses having a lens sag of less than about 4 mm. An array of secondary optical elements may also be provided, which extend between the array of primary lenses and the array of solar cells.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: September 17, 2019
    Assignee: X-Celeprint Limited
    Inventors: Etienne Menard, Christopher Bower, Scott Burroughs, Joe Carr, Bob Conner, Sergiy Dets, Bruce Furman, Matthew Meitl, Michael Sullivan
  • Patent number: 10418331
    Abstract: An electronic component array includes a backplane substrate, and a plurality of integrated circuit elements on the backplane substrate. Each of the integrated circuit elements includes a chiplet substrate having a connection pad and a conductor element on a surface thereof. The connection pad and the conductor element are electrically separated by an insulating layer that exposes at least a portion of the connection pad. At least one of the integrated circuit elements is misaligned on the backplane substrate relative to a desired position thereon. A plurality of conductive wires are provided on the backplane substrate including the integrated circuit elements thereon, and the connection pad of each of the integrated circuit elements is electrically connected to a respective one of the conductive wires notwithstanding the misalignment of the at least one of the integrated circuit elements. Related fabrication methods are also discussed.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 17, 2019
    Assignee: X-Celeprint Limited
    Inventor: Christopher Bower
  • Publication number: 20190272992
    Abstract: A thin film manipulation method comprising: wetting a textured surface of a thin film manipulator with a liquid, the textured surface comprising peaks separated by valleys, the liquid forming capillary bridges between the peaks of the textured surface; picking up a thin film by contacting the thin film with the wetted textured surface to adhere the thin film to the wetted textured surface by capillary action of the capillary bridges with the thin film; and releasing the adhered thin film from the thin film manipulator. Also disclosed is a thin film manipulator.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 5, 2019
    Inventors: Christopher BOWER, Zoran RADIVOJEVIC, Yinglin LIU, Joseph BOTTOMLEY, Ashley-Jon Stephenson RUSHTON
  • Patent number: 10395966
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10395582
    Abstract: A parallel redundant integrated-circuit system includes an input connection, an output connection and first and second active circuits. The first active circuit includes one or more first integrated circuits and has an input connected to the input connection and an output connected to the output connection. The second active circuit includes one or more second integrated circuits and is redundant to the first active circuit, has an input connected to the input connection, and has an output connected to the output connection. The second integrated circuits are separate and distinct from the first integrated circuits.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Matthew Meitl
  • Patent number: 10396238
    Abstract: The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro-transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Carl Prevatte, Salvatore Bonafede
  • Patent number: 10386254
    Abstract: A fastener status detection system is presented. The fastener status detection system comprises a primary fastener, a secondary fastener, and a sensor. The secondary fastener is configured to be a back-up to the primary fastener. The sensor is positioned to measure at least a portion of a load between the primary fastener and the secondary fastener.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 20, 2019
    Assignee: The Boeing Company
    Inventors: Lisa G. Schleuter, Kevin Christopher Klohe, Bret Alan Bowers
  • Patent number: 10380930
    Abstract: A heterogeneous light-emitter display includes a display substrate having a plurality of pixels disposed thereon. Each pixel including at least a first heterogeneous multiple-component sub-pixel emitting a first color of light and a second sub-pixel emitting a second color of light different from the first color. A heterogeneous light-emitter display can also include an array of heterogeneous pixels. Each heterogeneous pixel includes a plurality of first pixels and a plurality of second pixels. The first sub-pixel of each of the first pixels includes a first light emitter and the first sub-pixel of each of the second pixels includes a second light emitter different from the first light emitter. One or more pixel controllers control the pixels, the first and second pixels, the first and second sub-pixels, and the first and second light emitters.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl
  • Patent number: 10381430
    Abstract: A structure with an interconnection layer for redistribution of electrical connections includes a plurality of first electrical connections disposed on a substrate in a first arrangement. An insulating layer is disposed on the substrate over the first electrical connections. A plurality of second electrical connections is disposed on the insulating layer on a side of the insulating layer opposite the plurality of first electrical connections in a second arrangement. Each second electrical connection is electrically connected to a respective first electrical connection. An integrated circuit is disposed on the substrate and is electrically connected to the first electrical connections. The first electrical connections in the first arrangement have a greater spatial density than the second electrical connections in the second arrangement.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10361124
    Abstract: The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 0 0). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10361677
    Abstract: A micro-transfer printable transverse bulk acoustic wave filter comprises a piezoelectric filter element having a top side, a bottom side, a left side, and a right side disposed over a sacrificial portion on a source substrate. A top electrode is in contact with the top side and a bottom electrode is in contact with the bottom side. A left acoustic mirror is in contact with the left side and a right acoustic mirror is in contact with the right side. The thickness of the transverse bulk acoustic wave filter is substantially less than its length or width and its length can be greater than its width. The transverse bulk acoustic wave filter can be disposed on, and electrically connected to, a semiconductor substrate comprising an electronic circuit to control the transverse bulk acoustic wave filter and form a composite heterogeneous device that can be micro-transfer printed.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok, Robert R. Rotzoll
  • Publication number: 20190221552
    Abstract: A method of making a micro-transfer printed system includes providing a source wafer having a plurality of micro-transfer printable source devices arranged at a source spatial density; providing an intermediate wafer having a plurality of micro-transfer printable intermediate supports arranged at an intermediate spatial density less than or equal to the source spatial density; providing a destination substrate; micro-transfer printing the source devices from the source wafer to the intermediate supports of the intermediate wafer with a source stamp having a plurality of posts at a source transfer density to make an intermediate device on each intermediate support; and micro-transfer printing the intermediate devices from the intermediate wafer to the destination substrate at a destination spatial density less than the source spatial density with an intermediate stamp having a plurality of posts at an intermediate transfer density less than the source transfer density.
    Type: Application
    Filed: December 20, 2018
    Publication date: July 18, 2019
    Inventors: Christopher Bower, Matthew Meitl
  • Publication number: 20190209704
    Abstract: The present disclosure provides novel linker-cytotoxin conjugates and antibody-drug conjugates, including homogenous antibody-drug conjugates, comprising the novel linker-cytotoxin conjugates.
    Type: Application
    Filed: October 19, 2015
    Publication date: July 11, 2019
    Inventors: David Y. JACKSON, Edward HA, Paul SAUER, Simeon BOWERS, Maureen Fitch Bruhns, Jorge Monteon, Christopher Behrens, Randall L. Halcomb
  • Patent number: 10347168
    Abstract: A high-resolution display includes a display substrate having an array of light-emitting display pixels disposed thereon for displaying an image comprising an array of image pixels. The total number of display pixels in the array of light-emitting display pixels is less than and evenly divides the total number of image pixels in the image in at least one dimension. An actuator physically moves a display substrate and light-emitting display pixels in one or two dimensions in a direction parallel to a surface of the display substrate. A controller controls the light-emitting operation of display pixels and controls physical location of the display pixels. In some embodiments, a controller controls an actuator to spatially interpolate the spatial location of display pixels at successive times and controls the light-emitting operation of display pixels to display a different subset of the image pixels at each successive time.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: July 9, 2019
    Assignee: X-Celeprint Limited
    Inventors: Matthew Meitl, Ronald S. Cok, Christopher Bower
  • Patent number: 10347535
    Abstract: The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 1 1). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 9, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10312405
    Abstract: The disclosed technology relates generally to a method and system for micro assembling GaN materials and devices to form displays and lighting components that use arrays of small LEDs and high-power, high-voltage, and or high frequency transistors and diodes. GaN materials and devices can be formed from epitaxy on sapphire, silicon carbide, gallium nitride, aluminum nitride, or silicon substrates. The disclosed technology provides systems and methods for preparing GaN materials and devices at least partially formed on several of those native substrates for micro assembly.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: June 4, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10311316
    Abstract: A method, apparatus and computer program, wherein the method comprises: illuminating a portion of skin of a user; detecting light scattered by the illuminated portion of skin and using the detected light to identify locations of biometric features within the illuminated portion of skin; and configuring a light source to selectively illuminate identified locations of biometric features.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 4, 2019
    Assignee: Nokia Technologies Oy
    Inventors: Andrew Matthews, Christopher Bower, Troels Ronnow