Patents by Inventor Christopher C. McQuilkin

Christopher C. McQuilkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230231547
    Abstract: A multiple operating-mode comparator system can be useful for high bandwidth and low power automated testing. The system can include a gain stage configured to drive a high impedance input of a comparator output stage, wherein the gain stage includes a differential switching stage coupled to an adjustable impedance circuit, and an impedance magnitude characteristic of the adjustable impedance circuit corresponds to a bandwidth characteristic of the gain stage. The comparator output stage can include a buffer circuit coupled to a low impedance comparator output node. The buffer circuit can provide a reference voltage for a switched output signal at the output node in a higher speed mode, and the buffer circuit can provide the switched output signal at the output node in a lower power mode.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Patent number: 11686773
    Abstract: A test system can receive a test signal from a device under test (DUI) via a first signal path. A comparator circuit can receive the test signal and, in response, generate an intermediate output signal based on a magnitude relationship between the test signal a comparator reference signal. A compensation circuit can generate a correction signal that is complementary to a portion of the received test signal, such as to correct for loading effects of the first signal path. The test system can include an output circuit configured to provide a corrected differential output signal that is based on a combination of the intermediate output signal and the correction signal.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: June 27, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Patent number: 11637551
    Abstract: A multiple operating-mode comparator system can be useful for high bandwidth and low power automated testing. The system can include a gain stage configured to drive a high impedance input of a comparator output stage, wherein the gain stage includes a differential switching stage coupled to an adjustable impedance circuit, and an impedance magnitude characteristic of the adjustable impedance circuit corresponds to a bandwidth characteristic of the gain stage. The comparator output stage can include a buffer circuit coupled to a low impedance comparator output node. The buffer circuit can provide a reference voltage for a switched output signal at the output node in a higher speed mode, and the buffer circuit can provide the switched output signal at the output node in a lower power mode.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 25, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Patent number: 11340295
    Abstract: A force-sense system for providing signals to, or receiving signals from, a device under test (DUT) at a first DUT node. The system can include an interface coupling first and second portions of a first force-sense measurement device, such as a parametric measurement unit. The first and second portions of the first force-sense measurement device can be provided using respective different integrated circuits, such as can comprise different semiconductor dies of different die types. In a first test mode, the interface can be configured to communicate a first DUT force signal from the first portion to the second portion of the first force-sense measurement device, and in a second test mode the interface can be configured to communicate DUT sense information, received from the DUT at the first DUT node, from the second portion to the first portion of the first force-sense measurement device.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 24, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin, Brian Carey
  • Patent number: 11313903
    Abstract: A force-sense system can provide signals to, or receive signals from, a device under test (DUT) at a first DUT node. The system can include output buffer circuitry configured to provide a DUT signal to the DUT in response to a force control signal at a buffer control node, and controller circuitry configured to provide the force control signal at the buffer control node. The system can include bypass circuitry configured to selectively bypass the controller circuitry and provide an auxiliary control signal at the buffer control node. The auxiliary control signal can be used for system calibration. In an example, an external calibration circuit can provide the auxiliary control signal in response to information received from the DUT.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: April 26, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin, Brian Carey
  • Patent number: 11300608
    Abstract: In a test system that provides a high fidelity output signal, a transition driving circuit can selectively enable multiple, parallel current paths based on a desired voltage transition. The transition driving circuit can include a first switch configured to switch a first current path between an output node and a first current source/sink, and a second switch configured to switch a second current path between the output node and the first current source/sink. The transition driving circuit can include a control circuit that is configured to receive information about a desired voltage transition and, depending on a magnitude of the desired voltage transition, to selectively turn on one or both of the first and second switches to enable one or both of the first and second current paths to provide respective portions of the output signal from the first current source/sink to the output node of the test system.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 12, 2022
    Assignee: Analog Devices, Inc.
    Inventor: Christopher C. McQuilkin
  • Publication number: 20220099739
    Abstract: A force-sense system for providing signals to, or receiving signals from, a device under test (DUT) at a first DUT node. The system can include an interface coupling first and second portions of a first force-sense measurement device, such as a parametric measurement unit. The first and second portions of the first force-sense measurement device can be provided using respective different integrated circuits, such as can comprise different semiconductor dies of different die types. In a first test mode, the interface can be configured to communicate a first DUT force signal from the first portion to the second portion of the first force-sense measurement device, and in a second test mode the interface can be configured to communicate DUT sense information, received from the DUT at the first DUT node, from the second portion to the first portion of the first force-sense measurement device.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin, Brian Carey
  • Publication number: 20220099738
    Abstract: A force-sense system can provide signals to, or receive signals from, a device under test (DUT) at a first DUT node. The system can include output buffer circuitry configured to provide a DUT signal to the DUT in response to a force control signal at a buffer control node, and controller circuitry configured to provide the force control signal at the buffer control node. The system can include bypass circuitry configured to selectively bypass the controller circuitry and provide an auxiliary control signal at the buffer control node. The auxiliary control signal can be used for system calibration. In an example, an external calibration circuit can provide the auxiliary control signal in response to information received from the DUT.
    Type: Application
    Filed: October 15, 2020
    Publication date: March 31, 2022
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin, Brian Carey
  • Patent number: 11264906
    Abstract: A pin driver control system for enhancing pulse fidelity can include a first current switch circuit with a current input node and a voltage input node, wherein the first current switch circuit provides a switched output current signal in response to a voltage control signal at the voltage input node. The system can further include a first current source configured to receive a bias control signal and, in response, provide a drive current signal to the current input node of the first current switch. The drive current signal can have a magnitude that exceeds a magnitude of the switched output current signal. The system can further include a bias control circuit configured to receive information about a desired bias current magnitude for use by the first current switch circuit and, in response, provide the bias control signal to the first current source.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 1, 2022
    Assignee: Analog Devices, Inc.
    Inventor: Christopher C. McQuilkin
  • Publication number: 20210391854
    Abstract: A multiple operating-mode comparator system can be useful for high bandwidth and low power automated testing. The system can include a gain stage configured to drive a high impedance input of a comparator output stage, wherein the gain stage includes a differential switching stage coupled to an adjustable impedance circuit, and an impedance magnitude characteristic of the adjustable impedance circuit corresponds to a bandwidth characteristic of the gain stage. The comparator output stage can include a buffer circuit coupled to a low impedance comparator output node. The buffer circuit can provide a reference voltage for a switched output signal at the output node in a higher speed mode, and the buffer circuit can provide the switched output signal at the output node in a lower power mode.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Publication number: 20210297069
    Abstract: A multiple operating-mode comparator system can be useful for high bandwidth and low power automated testing. The system can include a gain stage configured to drive a high impedance input of a comparator output stage, wherein the gain stage includes a differential switching stage coupled to an adjustable impedance circuit, and an impedance magnitude characteristic of the adjustable impedance circuit corresponds to a bandwidth characteristic of the gain stage. The comparator output stage can include a buffer circuit coupled to a low impedance comparator output node. The buffer circuit can provide a reference voltage for a switched output signal at the output node in a higher speed mode, and the buffer circuit can provide the switched output signal at the output node in a lower power mode.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Patent number: 11125817
    Abstract: A test system can use first and different second driver stages to provide test signals to a device under test (DUT). A compound stage can receive signals from the driver stages and provide a voltage output signal to the DUT, such as via a gain circuit. The compound stage can include a buffer circuit configured to provide a first portion of the voltage output signal based on a first output signal from the first driver stage, and the compound stage can include a transimpedance circuit configured to provide a second portion of the voltage output signal based on a second output signal from the second driver stage. In an example, the gain circuit can receive a superposition signal comprising the first and second portions of the voltage output signal and, in response, provide a test signal to the DUT.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: September 21, 2021
    Assignee: Analog Devices, Inc.
    Inventor: Christopher C. McQuilkin
  • Patent number: 11128287
    Abstract: A multiple operating-mode comparator system can be useful for high bandwidth and low power automated testing. The system can include a gain stage configured to drive a high impedance input of a comparator output stage, wherein the gain stage includes a differential switching stage coupled to an adjustable impedance circuit, and an impedance magnitude characteristic of the adjustable impedance circuit corresponds to a bandwidth characteristic of the gain stage. The comparator output stage can include a buffer circuit coupled to a low impedance comparator output node. The buffer circuit can provide a reference voltage for a switched output signal at the output node in a higher speed mode, and the buffer circuit can provide the switched output signal at the output node in a lower power mode.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: September 21, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Christopher C. McQuilkin, Andrew Nathan Mort
  • Patent number: 11105843
    Abstract: A stabilization technique is disclosed that suppresses or inhibits glitching behavior on automated test equipment (ATE) during mode transitions. Adjustable stabilizing circuitry can be coupled to at least one of a force voltage circuit or a force current circuit is forcing voltage or current to a device under test (DUT). The adjustable stabilizing circuitry can be adjustably configurable in response to whether at least one of a current clamp or a voltage clamp is in an active clamping mode. In this manner, unwanted glitching behavior associated with mode changes can be reduced or suppressed.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: August 31, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin
  • Publication number: 20210184579
    Abstract: A pin driver control system for enhancing pulse fidelity can include a first current switch circuit with a current input node and a voltage input node, wherein the first current switch circuit provides a switched output current signal in response to a voltage control signal at the voltage input node. The system can further include a first current source configured to receive a bias control signal and, in response, provide a drive current signal to the current input node of the first current switch. The drive current signal can have a magnitude that exceeds a magnitude of the switched output current signal. The system can further include a bias control circuit configured to receive information about a desired bias current magnitude for use by the first current switch circuit and, in response, provide the bias control signal to the first current source.
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Inventor: Christopher C. McQuilkin
  • Publication number: 20210109151
    Abstract: A stabilization technique is disclosed that suppresses or inhibits glitching behavior on automated test equipment (ATE) during mode transitions. Adjustable stabilizing circuitry can be coupled to at least one of a force voltage circuit or a force current circuit is forcing voltage or current to a device under test (DUT). The adjustable stabilizing circuitry can be adjustably configurable in response to whether at least one of a current clamp or a voltage clamp is in an active clamping mode. In this manner, unwanted glitching behavior associated with mode changes can be reduced or suppressed.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Amit Kumar Singh, Christopher C. McQuilkin
  • Publication number: 20210109155
    Abstract: A test system can use first and different second driver stages to provide test signals to a device under test (DUT). A compound stage can receive signals from the driver stages and provide a voltage output signal to the DUT, such as via a gain circuit. The compound stage can include a buffer circuit configured to provide a first portion of the voltage output signal based on a first output signal from the first driver stage, and the compound stage can include a transimpedance circuit configured to provide a second portion of the voltage output signal based on a second output signal from the second driver stage. In an example, the gain circuit can receive a superposition signal comprising the first and second portions of the voltage output signal and, in response, provide a test signal to the DUT.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 15, 2021
    Inventor: Christopher C. McQuilkin
  • Patent number: 10547294
    Abstract: This disclosure is in the field of electronics and more specifically in the field of timing control electronics. In an example, a timing control system can include or use an array of circuit cells, and each cell can provide a signal delay using a fixed delay or interpolation. The interpolation can include, in one or more cells, using three timing signals with substantially different delays to create a delayed output signal. Linearity of the delayed output signal is thereby improved. In an example, an impedance transformation circuit can be applied to improve a bandwidth in one or more of the cells to thereby improve the bandwidth of the timing control system.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: January 28, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Andrew Nathan Mort, Christopher C. McQuilkin
  • Patent number: 10209307
    Abstract: A multiple-level driver circuit, such as for providing several different signals to a device under test (DUT) in an automated test system, can include multiple diode bridge circuits. In an example, a first diode bridge circuit is configured to receive a multiple-valued input voltage signal, having at least two different DC voltage signal levels, at an input node and, in response, to selectively provide a corresponding multiple-valued output voltage signal at an output node. The first diode bridge circuit can operate in a conducting and non-commutated state when it is used to selectively provide the multiple-valued output voltage signal at the output node.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: February 19, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Christopher C. McQuilkin
  • Publication number: 20180358957
    Abstract: This disclosure is in the field of electronics and more specifically in the field of timing control electronics. In an example, a timing control system can include or use an array of circuit cells, and each cell can provide a signal delay using a fixed delay or interpolation. The interpolation can include, in one or more cells, using three timing signals with substantially different delays to create a delayed output signal. Linearity of the delayed output signal is thereby improved. In an example, an impedance transformation circuit can be applied to improve a bandwidth in one or more of the cells to thereby improve the bandwidth of the timing control system.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Andrew Nathan Mort, Christopher C. McQuilkin