Patents by Inventor Christopher C. Swoish

Christopher C. Swoish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150068197
    Abstract: A urea injection controller for a motorized system includes a passive regeneration model configured and disposed to calculate an amount of NOx conversion resulting from an interaction between exhaust gases and soot entrained in a selective catalyst reduction filter (SCRF) device, a replenishment mode trigger module configured to set an ammonia replenishment request based on the passive regeneration model, and a replenishment control module configured to selectively activate a urea injector to discharge a particular amount of urea based on the regeneration model.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Thomas Larose, JR., Christopher Whitt, Joshua Clifford Bedford
  • Publication number: 20150047328
    Abstract: A vehicle and a method of updating efficiency of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes obtaining an initial calculated efficiency of the SCRF, via a controller, regarding one of a NOx conversion, a reductant absorption, a reductant desorption and a reductant oxidation. The method also includes determining a soot mass estimate in the SCRF representative of an amount of soot collected inside the SCRF and determining a soot correction factor from the soot mass estimate. The method further includes calculating, via the controller, an updated efficiency value of the SCRF by multiplying the soot correction factor and the initial calculated efficiency to update efficiency of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, JR., Christopher C. Swoish, Christopher Whitt, Joshua Clifford Bedford
  • Publication number: 20150047319
    Abstract: A vehicle and a method of determining a reductant storage capacity set point of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of a vehicle are disclosed. The method includes determining a storage estimate of a reductant inside the SCRF and determining a particulate estimate in the SCRF representative of an amount of particulate matter collected inside the SCRF. The method also includes determining a particulate correction factor from the particulate estimate and calculating, via a controller, a set point value of the reductant in the SCRF by computing together the particulate correction factor and the storage estimate to determine the reductant storage capacity set point of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, JR., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Publication number: 20150047320
    Abstract: A vehicle and method of updating aging of a selective catalytic reduction filter (SCRF) of an exhaust treatment system of the vehicle are disclosed. The method includes determining a desorption rate estimate of a catalyst of the SCRF and determining an ash volume estimate representative of an amount of ash collected inside the SCRF. The method also includes determining an ash correction factor from the ash volume estimate and calculating, via a controller, a corrected desorption rate value by multiplying the ash correction factor with the desorption rate estimate to update the aging of the SCRF.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas Larose, Jr., Christopher Whitt, Christopher C. Swoish, Joshua Clifford Bedford
  • Publication number: 20140371054
    Abstract: A system and method for adapting the clean filter correction map for a selective catalyst reduction filter SCRF of an exhaust gas aftertreatment system are provided. The system may be in fluid communication with an engine of a vehicle. The system may include a first pressure sensor and a second pressure. A differential pressure module is in communication with the first pressure sensor and the second pressure sensor and configured to generate a delta pressure signal corresponding to a pressure drop between the first pressure sensor and the second pressure sensor. The system may also include a controller configured to determine a number of completed regeneration events of the SCRF; compare the number of completed regeneration events to an evaluation element; and enable an adaptation module by executing one of a first control action, a second control action, and a third control action.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Christopher Whitt, Thomas Larose, JR., Christopher C. Swoish, Joshua Clifford Bedford
  • Patent number: 8904757
    Abstract: Method for controlling regeneration within an after-treatment component of an engine comprises receiving an upstream temperature signal, receiving a downstream temperature signal, and calculating a temperature difference based on a difference between the upstream temperature signal and the downstream temperature signal. The temperature difference is compared to a predetermined temperature change limit to determine whether the temperature difference is less than or greater than the predetermined temperature change limit. If the temperature difference is less than the predetermined temperature change limit, an estimate of accumulated particulate matter in the after-treatment component is calculated using a primary soot accumulation model. If the temperature difference is greater than the predetermined temperature change limit, an estimate of accumulated particulate matter in the after-treatment component is calculated using a secondary soot accumulation model.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: December 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Douglas Christopher Sarsen, Christopher C. Swoish, Christopher Whitt
  • Publication number: 20140352281
    Abstract: A particulate filter device monitoring system for an internal combustion engine includes a particulate accumulation register configured to store an amount of particulate in a particulate filter. The particulate accumulation register includes a particulate accumulation trigger zone having a power limiting mode trigger. A power limiting mode trigger module is configured to limit output power of the internal combustion engine when the amount of particulate accumulation reaches the power limiting mode trigger. A particulate accumulation model module includes a particulate accumulation model configured to calculate changes in particulate accumulation in the particulate accumulation register at a first sampling rate when particulate accumulation is outside the particulate accumulation trigger zone, and at a second sampling rate when particulate accumulation is within the particulate accumulation trigger zone.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 4, 2014
    Inventors: Christopher Whitt, Douglas Christopher Sarsen, Christopher C. Swoish
  • Publication number: 20140331654
    Abstract: A particulate filter device monitoring system for an engine includes a regeneration mode trigger module configured to set a regeneration request based on soot accumulation in the particulate filter device, a regeneration control module configured to control regeneration of the particulate filter device, and a soot out model module including a soot out model configured to calculate changes in soot out rate during prolonged engine idling periods.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Christopher Whitt
  • Patent number: 8806852
    Abstract: A method for controlling regeneration within an after-treatment component of a compression-ignition engine includes receiving a value of a parameter associated with an exhaust stream passing through the after-treatment component and determining a rate of change of the parameter. A filtered parameter value is calculated based on the value of the parameter, the rate of change of the parameter, and a predetermined filtering relationship for the parameter. Accumulated particulate matter in the after-treatment component is estimated based, at least, on a soot accumulation model and the filtered parameter value. The estimate of accumulated particulate matter in the after-treatment component is compared to a predetermined threshold associated with the after-treatment component, and a remedial action is initiated when the estimate of accumulated particulate matter in the after-treatment component exceeds the predetermined threshold.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: August 19, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Christopher Whitt, Douglas Christopher Sarsen
  • Publication number: 20140123628
    Abstract: In one exemplary embodiment of the invention, a method for controlling regeneration for an exhaust system of an internal combustion engine, wherein the exhaust system includes a particulate filter is provided, where the method includes determining a mass flow rate of oxygen received from the internal combustion engine, determining a particulate mass within the particulate filter, determining a desired particulate burn rate based on the mass flow rate of oxygen and the particulate mass and determining a current particulate burn rate. The method also includes determining a correction value based on the desired particulate burn rate and the current particulate burn rate, determining a temperature set point for exhaust gas entering the particulate filter based on the correction value, an engine speed and an engine load and communicating a signal, from a controller, to control a parameter for a regeneration system based on the determined temperature set point.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: THOMAS LAROSE, JR., CHRISTOPHER WHITT, CHRISTOPHER C. SWOISH, DOUGLAS CHRISTOPHER SARSEN
  • Publication number: 20140033679
    Abstract: A method of correcting a soot mass estimate in a vehicle exhaust aftertreatment device includes monitoring an exhaust gas pressure drop across a particulate filter included with the vehicle exhaust aftertreatment device. Following the detection of a pressure drop, a controller may determine a soot mass estimate from the monitored pressure drop; determine an ash volume estimate representative of an amount of ash within the particulate filter; determine an ash correction factor from the soot mass estimate and the ash volume estimate; and calculate a corrected soot mass value by multiplying the ash correction factor with the soot mass estimate. If the corrected soot mass value exceeds a threshold, the controller may generate a corresponding particulate filter regeneration request.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Douglas Christopher Sarsen, CHRISTOPHER WHITT, CHRISTOPHER C. SWOISH, REBECCA J. DARR
  • Publication number: 20140033680
    Abstract: A method of monitoring a particulate filter of an exhaust aftertreatment device includes sensing a first pressure drop across the particulate filter at a first instant in time, and sensing a second pressure drop across the particulate filter at a second instant in time. A controller may then calculate a rate-of-change of the pressure drop between the first instant in time and the second instant in time while sensing a flow rate of an exhaust gas flowing through the exhaust aftertreatment device. Using the sensed exhaust flow rate, the controller may determine a rate-of-change threshold, and subsequently compare the calculated rate-of-change to the rate-of-change threshold. The method further includes updating a soot model using the sensed second pressure drop if the calculated rate-of-change is less than the rate-of-change threshold.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher C. Swoish, Christopher Whitt, Douglas Christopher Sarsen
  • Publication number: 20140033678
    Abstract: A method of correcting a soot mass estimate in a vehicle exhaust after-treatment device includes monitoring an exhaust gas pressure drop across a particulate filter included with the vehicle exhaust after-treatment device; determining an initial soot mass estimate from a monitored exhaust gas pressure drop; revising the initial soot mass estimate in view of a monitored engine speed, engine load, exhaust gas temperature, and NOx gas flow rate; and generating a particulate filter regeneration request if the revised soot mass estimate exceeds a threshold.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher C. Swoish, Douglas Christopher Sarsen, Christopher Whitt
  • Publication number: 20140000239
    Abstract: An internal combustion engine includes an intake air compressor system and is fluidly coupled to an exhaust aftertreatment system having a particulate filter. A method for operating the internal combustion engine includes determining a total engine-out soot generation based upon a summation of a steady-state engine-out soot generation rate and an engine-out soot generation rate correction. The engine-out soot generation rate correction is either zero when the intake air compressor system is closed-loop controlled or a rate based upon a deviation between an actual boost pressure and an expected boost pressure from the intake air compressor system. The particulate filter is regenerated when the total engine-out soot generation exceeds a predetermined threshold.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher C. Swoish, Douglas Christopher Sarsen, Christopher Whitt, Thomas Larose, JR.
  • Publication number: 20130298529
    Abstract: A method for controlling regeneration within an after-treatment component of an engine includes receiving a signal that is responsive to a change in pressure across an after-treatment component and calculating an estimate of accumulated particulate matter in the after-treatment component using a soot accumulation model calibrated to simulate operation of the engine at a reference condition. A soot model correction factor is based at least in part on an environmental temperature correction and is applied to the estimate of accumulated particulate matter in the after-treatment component to produce a temperature-compensated estimate of accumulated particulate matter in the after-treatment component.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher C. Swoish, Christopher Whitt, Douglas Christopher Sarsen, Rebecca J. Darr
  • Publication number: 20130199159
    Abstract: A method for controlling regeneration within an after-treatment component of a compression-ignition engine includes receiving a value of a parameter associated with an exhaust stream passing through the after-treatment component and determining a rate of change of the parameter. A filtered parameter value is calculated based on the value of the parameter, the rate of change of the parameter, and a predetermined filtering relationship for the parameter. Accumulated particulate matter in the after-treatment component is estimated based, at least, on a soot accumulation model and the filtered parameter value. The estimate of accumulated particulate matter in the after-treatment component is compared to a predetermined threshold associated with the after-treatment component, and a remedial action is initiated when the estimate of accumulated particulate matter in the after-treatment component exceeds the predetermined threshold.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher C. Swoish, Christopher Whitt, Douglas Christopher Sarsen
  • Publication number: 20130204508
    Abstract: A method for controlling regeneration within an after-treatment component of an engine comprises receiving an upstream temperature signal representing a temperature of an exhaust stream upstream from the after-treatment component and calculating an expected downstream temperature based on the upstream temperature signal and a model for calculating the expected downstream temperature. A temperature index is calculated based on the upstream temperature signal and the expected downstream temperature, and an estimate of accumulated particulate matter in the after-treatment component is calculated based, at least in part, on the temperature index. The estimate of accumulated particulate matter in the after-treatment component is compared to a predetermined threshold associated with the after-treatment component, and a remedial action is initiated when the estimate of accumulated particulate matter in the after-treatment component exceeds the predetermined threshold.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Christopher Whitt, Douglas Christopher Sarsen, Christopher C. Swoish
  • Publication number: 20130180230
    Abstract: Method for controlling regeneration within an after-treatment component of an engine comprises receiving an upstream temperature signal, receiving a downstream temperature signal, and calculating a temperature difference based on a difference between the upstream temperature signal and the downstream temperature signal. The temperature difference is compared to a predetermined temperature change limit to determine whether the temperature difference is less than or greater than the predetermined temperature change limit. If the temperature difference is less than the predetermined temperature change limit, an estimate of accumulated particulate matter in the after-treatment component is calculated using a primary soot accumulation model. If the temperature difference is greater than the predetermined temperature change limit, an estimate of accumulated particulate matter in the after-treatment component is calculated using a secondary soot accumulation model.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Douglas Christopher Sarsen, Christopher C. Swoish, Christopher Whitt