Patents by Inventor Christopher Coleman

Christopher Coleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250068166
    Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Applicant: Tesla, Inc.
    Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
  • Patent number: 12204054
    Abstract: Systems and components for testing a light detection and ranging (LIDAR) device under test (DUT) are described. In one example, an ellipsoid is adapted to receive the LIDAR DUT at a first focal point, where light transmitted from the LIDAR DUT is incident on the second focal point. In another example a plurality of optical waveguides arranged in at least a portion of a circle, and the plurality of optical waveguides are adapted to receive light from the LIDAR DUT. In another example, a LIDAR distance simulator is adapted to receive an optical input, and includes optical switches that are selectively connected to one of a plurality of optical delay devices to an input of the one of a plurality of optical input channels. Illustrative delay elements may be realized through optical delay elements or a combination of optical and electrical delay elements.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 21, 2025
    Assignee: KEYSIGHT TECHNOLOGIES, INC.
    Inventors: Chan Fong Tan, Christopher Coleman, Paul L. Corredoura, Bogdan Szafraniec, Mong Long Ang
  • Patent number: 12203739
    Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE) disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 21, 2025
    Assignee: KEYSIGHT TECHNOLOGIES, INC.
    Inventors: Christopher Coleman, Ryan Scott
  • Publication number: 20250020880
    Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE), which includes a plurality of lens elements, is disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.
    Type: Application
    Filed: September 27, 2024
    Publication date: January 16, 2025
    Inventors: Christopher Coleman, Ryan Scott
  • Patent number: 12164310
    Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: December 10, 2024
    Assignee: Tesla, Inc.
    Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
  • Publication number: 20240221890
    Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.
    Type: Application
    Filed: December 12, 2023
    Publication date: July 4, 2024
    Inventors: Keith Mooney, Kevin O'Brien, Christopher Coleman, Dara George, Ehab Azab
  • Patent number: 11887716
    Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 30, 2024
    Assignee: CareFusion 303, Inc.
    Inventors: Keith Mooney, Kevin O'Brien, Christopher Coleman, Dara George, Ehab Azab
  • Publication number: 20230176593
    Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.
    Type: Application
    Filed: January 27, 2023
    Publication date: June 8, 2023
    Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
  • Publication number: 20230069210
    Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.
    Type: Application
    Filed: May 17, 2022
    Publication date: March 2, 2023
    Applicant: Cronvo LLC
    Inventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
  • Patent number: 11567514
    Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: January 31, 2023
    Assignee: Tesla, Inc.
    Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
  • Publication number: 20220299312
    Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE) disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.
    Type: Application
    Filed: November 30, 2021
    Publication date: September 22, 2022
    Inventors: Christopher Coleman, Ryan Scott
  • Publication number: 20210373137
    Abstract: Systems and components for testing a light detection and ranging (LIDAR) device under test (DUT) are described. In one example, an ellipsoid is adapted to receive the LIDAR DUT at a first focal point, where light transmitted from the LIDAR DUT is incident on the second focal point. In another example a plurality of optical waveguides arranged in at least a portion of a circle, and the plurality of optical waveguides are adapted to receive light from the LIDAR DUT. In another example, a LIDAR distance simulator is adapted to receive an optical input, and includes optical switches that are selectively connected to one of a plurality of optical delay devices to an input of the one of a plurality of optical input channels. Illustrative delay elements may be realized through optical delay elements or a combination of optical and electrical delay elements.
    Type: Application
    Filed: December 18, 2020
    Publication date: December 2, 2021
    Inventors: Chan Fong Tan, Christopher Coleman, Paul L. Corredoura, Bogdan Szafraniec, Mong Long Ang
  • Publication number: 20210358589
    Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.
    Type: Application
    Filed: April 9, 2021
    Publication date: November 18, 2021
    Inventors: Keith Mooney, Kevin O' Brien, Christopher Coleman, Dara George, Ehab Azab
  • Publication number: 20210119976
    Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.
    Type: Application
    Filed: June 9, 2020
    Publication date: April 22, 2021
    Applicant: Cronvo LLC
    Inventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
  • Publication number: 20200257317
    Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
  • Patent number: 10726704
    Abstract: Systems and methods for delaying transmission of an alarm signal responsive to detecting delay actions indicative of progress towards confirming or denying the alarm signal are provided and can include an alarm processing device receiving the alarm signal and determining whether a user device is enrolled in an alarm notification service. When the user device is enrolled in the alarm notification service, the alarm processing device can transmit a notification to the user device, start a delay timer, and determine whether a first delay action associated with the user device is detected prior to expiration of the delay timer. When the first delay action is detected prior to the expiration of the delay timer, the alarm processing device can alter the delay timer consistent with a next delay action associated with the user device and, when the delay timer expires, transmit the alarm signal to the central monitoring station.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: July 28, 2020
    Assignee: ADEMCO INC.
    Inventors: James Kern, Christopher Coleman, Philip Ferro
  • Publication number: 20190273726
    Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Applicant: Cronvo LLC
    Inventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
  • Patent number: 10305863
    Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 28, 2019
    Assignee: Cronvo LLC
    Inventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
  • Patent number: 10139389
    Abstract: An autonomic self-indicating material is provided, the material comprising a polymer composition or a composite material embedded with a microcapsule or a vascular structure comprising an aggregation-induced emission (AIE) luminogen. Upon mechanical damage to the material, the luminogen is released and aggregates, leading to fluorescence.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 27, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Jeffrey S. Moore, Scott R. White, Nancy R. Sottos, Wenle Li, Christopher Coleman Matthews, Maxwell J. Robb
  • Publication number: 20180227273
    Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.
    Type: Application
    Filed: August 4, 2016
    Publication date: August 9, 2018
    Applicant: Cronvo LLC
    Inventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone