Patents by Inventor Christopher Coleman
Christopher Coleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250068166Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.Type: ApplicationFiled: November 8, 2024Publication date: February 27, 2025Applicant: Tesla, Inc.Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
-
Patent number: 12204054Abstract: Systems and components for testing a light detection and ranging (LIDAR) device under test (DUT) are described. In one example, an ellipsoid is adapted to receive the LIDAR DUT at a first focal point, where light transmitted from the LIDAR DUT is incident on the second focal point. In another example a plurality of optical waveguides arranged in at least a portion of a circle, and the plurality of optical waveguides are adapted to receive light from the LIDAR DUT. In another example, a LIDAR distance simulator is adapted to receive an optical input, and includes optical switches that are selectively connected to one of a plurality of optical delay devices to an input of the one of a plurality of optical input channels. Illustrative delay elements may be realized through optical delay elements or a combination of optical and electrical delay elements.Type: GrantFiled: December 18, 2020Date of Patent: January 21, 2025Assignee: KEYSIGHT TECHNOLOGIES, INC.Inventors: Chan Fong Tan, Christopher Coleman, Paul L. Corredoura, Bogdan Szafraniec, Mong Long Ang
-
Patent number: 12203739Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE) disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.Type: GrantFiled: November 30, 2021Date of Patent: January 21, 2025Assignee: KEYSIGHT TECHNOLOGIES, INC.Inventors: Christopher Coleman, Ryan Scott
-
Publication number: 20250020880Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE), which includes a plurality of lens elements, is disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.Type: ApplicationFiled: September 27, 2024Publication date: January 16, 2025Inventors: Christopher Coleman, Ryan Scott
-
Patent number: 12164310Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.Type: GrantFiled: January 27, 2023Date of Patent: December 10, 2024Assignee: Tesla, Inc.Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
-
Publication number: 20240221890Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.Type: ApplicationFiled: December 12, 2023Publication date: July 4, 2024Inventors: Keith Mooney, Kevin O'Brien, Christopher Coleman, Dara George, Ehab Azab
-
Patent number: 11887716Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.Type: GrantFiled: April 9, 2021Date of Patent: January 30, 2024Assignee: CareFusion 303, Inc.Inventors: Keith Mooney, Kevin O'Brien, Christopher Coleman, Dara George, Ehab Azab
-
Publication number: 20230176593Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.Type: ApplicationFiled: January 27, 2023Publication date: June 8, 2023Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
-
Publication number: 20230069210Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.Type: ApplicationFiled: May 17, 2022Publication date: March 2, 2023Applicant: Cronvo LLCInventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
-
Patent number: 11567514Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.Type: GrantFiled: February 11, 2019Date of Patent: January 31, 2023Assignee: Tesla, Inc.Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
-
Publication number: 20220299312Abstract: A system for determining optical probe location relative to a photonic integrated circuit (PIC) is described. A diffractive optical element (DOE) disposed in the PIC, and has a focal point of absolute maximum reflection at location having coordinates in three-dimensions above the PIC. The system includes an optical waveguide probe, and an optical source adapted to provide light through the optical waveguide probe and incident on the DOE. The DOE reflects and focuses light back to the optical waveguide probe, and a power meter is adapted to receive at least a portion of the light reflected and focused at the focal point above the PIC. Based on the determination of a location of the absolute maximum reflection, consistent and reliable testing of PIC can be achieved.Type: ApplicationFiled: November 30, 2021Publication date: September 22, 2022Inventors: Christopher Coleman, Ryan Scott
-
Publication number: 20210373137Abstract: Systems and components for testing a light detection and ranging (LIDAR) device under test (DUT) are described. In one example, an ellipsoid is adapted to receive the LIDAR DUT at a first focal point, where light transmitted from the LIDAR DUT is incident on the second focal point. In another example a plurality of optical waveguides arranged in at least a portion of a circle, and the plurality of optical waveguides are adapted to receive light from the LIDAR DUT. In another example, a LIDAR distance simulator is adapted to receive an optical input, and includes optical switches that are selectively connected to one of a plurality of optical delay devices to an input of the one of a plurality of optical input channels. Illustrative delay elements may be realized through optical delay elements or a combination of optical and electrical delay elements.Type: ApplicationFiled: December 18, 2020Publication date: December 2, 2021Inventors: Chan Fong Tan, Christopher Coleman, Paul L. Corredoura, Bogdan Szafraniec, Mong Long Ang
-
Publication number: 20210358589Abstract: A method includes receiving, by a master infusion device from a server, at least one fluid delivery protocol. The fluid delivery protocol includes one or more parameters for delivering a fluid to a user. The method also includes configuring, by the master infusion device, a first slave infusion pump with a first fluid delivery protocol of the at least one fluid delivery protocol. The method further includes configuring, by the master infusion device, a second slave infusion pump with a second fluid delivery protocol of the at least one fluid delivery protocol. The method also includes delivering, by the first slave infusion pump and based on the first fluid delivery protocol, the fluid to the user. Related methods and articles of manufacture, including apparatuses and computer program products, are also disclosed.Type: ApplicationFiled: April 9, 2021Publication date: November 18, 2021Inventors: Keith Mooney, Kevin O' Brien, Christopher Coleman, Dara George, Ehab Azab
-
Publication number: 20210119976Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.Type: ApplicationFiled: June 9, 2020Publication date: April 22, 2021Applicant: Cronvo LLCInventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
-
Publication number: 20200257317Abstract: A processor coupled to memory is configured to receive an identification of a geographical location associated with a target specified by a user remote from a vehicle. A machine learning model is utilized to generate a representation of at least a portion of an environment surrounding the vehicle using sensor data from one or more sensors of the vehicle. At least a portion of a path to a target location corresponding to the received geographical location is calculated using the generated representation of the at least portion of the environment surrounding the vehicle. At least one command is provided to automatically navigate the vehicle based on the determined path and updated sensor data from at least a portion of the one or more sensors of the vehicle.Type: ApplicationFiled: February 11, 2019Publication date: August 13, 2020Inventors: Elon Musk, Kate Park, Nenad Uzunovic, Christopher Coleman Moore, Francis Havlak, Stuart Bowers, Andrej Karpathy, Arvind Ramanandan, Ashima Kapur Sud, Paul Chen, Paril Jain, Alexander Hertzberg, Jason Kong, Li Wang, Oktay Arslan, Nicklas Gustafsson, Charles Shieh, David Seelig
-
Patent number: 10726704Abstract: Systems and methods for delaying transmission of an alarm signal responsive to detecting delay actions indicative of progress towards confirming or denying the alarm signal are provided and can include an alarm processing device receiving the alarm signal and determining whether a user device is enrolled in an alarm notification service. When the user device is enrolled in the alarm notification service, the alarm processing device can transmit a notification to the user device, start a delay timer, and determine whether a first delay action associated with the user device is detected prior to expiration of the delay timer. When the first delay action is detected prior to the expiration of the delay timer, the alarm processing device can alter the delay timer consistent with a next delay action associated with the user device and, when the delay timer expires, transmit the alarm signal to the central monitoring station.Type: GrantFiled: July 2, 2019Date of Patent: July 28, 2020Assignee: ADEMCO INC.Inventors: James Kern, Christopher Coleman, Philip Ferro
-
Publication number: 20190273726Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.Type: ApplicationFiled: May 20, 2019Publication date: September 5, 2019Applicant: Cronvo LLCInventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
-
Patent number: 10305863Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.Type: GrantFiled: August 4, 2016Date of Patent: May 28, 2019Assignee: Cronvo LLCInventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone
-
Patent number: 10139389Abstract: An autonomic self-indicating material is provided, the material comprising a polymer composition or a composite material embedded with a microcapsule or a vascular structure comprising an aggregation-induced emission (AIE) luminogen. Upon mechanical damage to the material, the luminogen is released and aggregates, leading to fluorescence.Type: GrantFiled: December 15, 2016Date of Patent: November 27, 2018Assignee: The Board of Trustees of the University of IllinoisInventors: Jeffrey S. Moore, Scott R. White, Nancy R. Sottos, Wenle Li, Christopher Coleman Matthews, Maxwell J. Robb
-
Publication number: 20180227273Abstract: Systems and methods of the present disclosure are directed to a telecommunications management system (TMS) that receives an indication from a first user to participate in a telecommunication. The TMS can identify a characteristic of the first user and compare the characteristic with one or more characteristics of each user of a pool of users. The TMS can select, based on the comparison, a second user of the pool of users that matches the first user. The TMS can initiate, responsive to selecting the matching second user, an anonymous telecommunications channel between the first user and the second user.Type: ApplicationFiled: August 4, 2016Publication date: August 9, 2018Applicant: Cronvo LLCInventors: Marc Evan Shumsker, Christopher Coleman Trabue, Victor Leone