Patents by Inventor Christopher D. Gadda

Christopher D. Gadda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10988142
    Abstract: A method for controlling a vehicle includes applying torque to a set of tires to cause the vehicle to move along a surface, reducing an amount of downward force applied to the surface by a first tire from the set of tires using an active suspension component, and actuating the first tire to control the dynamic response of the first tire relative to the surface. The method also includes determining a traction force of the first tire relative to the surface at each of multiple values for the dynamic response of the first tire relative to the surface, and determining a maximum available traction force based on the multiple values of the dynamic response and the corresponding values for the traction force. The method also includes determining a friction parameter based on the maximum available traction force, and controlling an operation of the vehicle based on the friction parameter.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 27, 2021
    Assignee: Apple Inc.
    Inventors: Prateek Mehrotra, Christopher D. Gadda
  • Patent number: 10948582
    Abstract: Aspects of the present disclosure involve a method for determining a road vehicle velocity and slip angle. The current disclosure presents a technique for identifying a vehicle's velocity and slip angle, in the vehicle's coordinate frame. In one embodiment, two or more sensors are orthogonally located on the underside of the vehicle in order to obtain longitudinal and lateral velocity information for slip angle determination. In another embodiment, the two or more sensors can include an array of elements for beam steering and receiver beamforming. Spatial diversity is leveraged in identifying at least a slip angle and/or velocity of the vehicle. Doppler mapping is used as a means for slip angle determination and the clutter ridge of the Doppler map is embraced for identifying the slip angle.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: March 16, 2021
    Assignee: Apple Inc.
    Inventors: Gabriel M. Hoffmann, Christopher D. Gadda, David A. Stronks, Ahmad Al-Dahle, Gregory E. Rogers
  • Patent number: 10919520
    Abstract: A control system for a vehicle includes a plurality of vehicle actuators that are operable to affect actual chassis-level accelerations, a vehicle intelligence unit that determines a motion plan, a vehicle motion control unit that determines a chassis-level motion request based on the motion plan, and a chassis control unit that determines actuator commands for the plurality of vehicle actuators based on the chassis-level motion request and actuator identity information that describes presently available actuators from the plurality of vehicle actuators.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Christopher D. Gadda, Carlos Alberto De Magalhaes Massera Filho, David A. Stronks, Gabriel M. Hoffmann, Miroslav Baric, Nathaniel B. Honka, Stefan Solyom, Timothee J. Cazenave
  • Patent number: 10407035
    Abstract: A control system for a vehicle includes a plurality of vehicle actuators that are operable to affect actual chassis-level accelerations, a vehicle intelligence unit that determines a motion plan, a vehicle motion control unit that determines a chassis-level motion request based on the motion plan, and a chassis control unit that determines actuator commands for the plurality of vehicle actuators based on the chassis-level motion request.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 10, 2019
    Assignee: Apple Inc.
    Inventors: Christopher D. Gadda, Carlos Alberto De Magalhaes Massera Filho, David A. Stronks, Gabriel M. Hoffmann, Miroslav Baric, Nathaniel B. Honka, Stefan Solyom, Timothee J. Cazenave
  • Patent number: 10384672
    Abstract: A control system for a vehicle includes an internal vehicle reference model that determines reference states for the vehicle that represent an expected vehicle response, sensors that determine measured states for the vehicle, and a vehicle motion control system that determines desired states for the vehicle. A stability determining module identifies a reference deviation between the reference states and the measured states, identifies a desired deviation between the desired states and measured states, and outputs a command for reducing the reference deviation and the desired deviation. Actuators are operable to reduce the reference deviation and the desired deviation in response to the command.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: August 20, 2019
    Assignee: Apple Inc.
    Inventors: Diomidis Katzourakis, Huibert Mees, Christopher D. Gadda, Stefan Solyom, Johannes A. Huennekens
  • Patent number: 10247816
    Abstract: Aspects of the present disclosure involve a method for determining a road vehicle velocity and slip angle. The current disclosure presents a technique for identifying a vehicle's velocity and slip angle, in the vehicle's coordinate frame. In one embodiment, two or more sensors are orthogonally located on the underside of the vehicle in order to obtain longitudinal and lateral velocity information for slip angle determination. In another embodiment, the two or more sensors can include an array of elements for beam steering and receiver beamforming. Spatial diversity is leveraged in identifying at least a slip angle and/or velocity of the vehicle. Doppler mapping is used as a means for slip angle determination and the clutter ridge of the Doppler map is embraced for identifying the slip angle.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: April 2, 2019
    Assignee: Apple Inc.
    Inventors: Gabriel M. Hoffmann, Christopher D. Gadda, David A. Stronks, Ahmad Al-Dahle, Gregory E. Rogers
  • Patent number: 8629657
    Abstract: A management system for a battery cell pack, the management system including a controller determining an adjustable charge profile for the battery cell pack wherein the adjustable charge profile includes an operational parameter identifying a next operation drive range mode from a set of drive range modes for the battery cell pack wherein each the drive range mode includes a state of charge (SOC) window between a charge SOC and a discharge SOC, with the set of drive range modes including a first drive range mode having a first SOC window and including a second drive range mode having a second SOC window less than the first SOC window; and one or more energy transfer stages to produce the charge SOC of the next operation drive range mode in the battery cell pack.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 14, 2014
    Assignee: Tesla Motors, Inc.
    Inventors: Clay H. Kishiyama, Vineet H. Mehta, Christopher D. Gadda, Scott I. Kohn
  • Publication number: 20110156641
    Abstract: A system and method for improving cycle lifetimes for a lithium-ion battery pack, particularly for adapting to a dynamic use profile for a user.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: Tesla Motors, Inc.
    Inventors: Clay H. Kishiyama, Vineet H. Mehta, Christopher D. Gadda
  • Publication number: 20110156652
    Abstract: A management system for a battery cell pack, the management system including a controller determining an adjustable charge profile for the battery cell pack wherein the adjustable charge profile includes an operational parameter identifying a next operation drive range mode from a set of drive range modes for the battery cell pack wherein each the drive range mode includes a state of charge (SOC) window between a charge SOC and a discharge SOC, with the set of drive range modes including a first drive range mode having a first SOC window and including a second drive range mode having a second SOC window less than the first SOC window; and one or more energy transfer stages to produce the charge SOC of the next operation drive range mode in the battery cell pack.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 30, 2011
    Inventors: Clay H. Kishiyama, Vineet H. Mehta, Christopher D. Gadda, Scott I. Kohn