Patents by Inventor Christopher D. Herring

Christopher D. Herring has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10767196
    Abstract: The present invention provides for the manipulation of cofactor usage in a recombinant host cell to increase the formation of desirable products. In some embodiments, the invention provides for a recombinant microorganism comprising a mutation in one or more native enzymes such that their cofactor specificity is altered in such a way that overall cofactor usage in the cell is balanced for a specified pathway and there is an increase in a specific product formation within the cell. In some embodiments, endogenous enzymes are replaced by enzymes with an alternate cofactor specificity from a different species.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 8, 2020
    Assignees: Enchi Corporation, Dartmouth College, UT-Battelle, LLC
    Inventors: Jonathan Lo, Adam M. Guss, Johannes P. Van Dijken, Arthur J. Shaw, IV, Daniel G. Olson, Christopher D. Herring, D. Aaron Argyros, Nicky Caiazza
  • Patent number: 9803221
    Abstract: The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 31, 2017
    Assignees: Enchi Corporation, Dartmouth College
    Inventors: Yu Deng, Daniel G. Olson, Johannes Pieter van Dijken, Arthur J. Shaw, IV, Aaron Argyros, Trisha Barrett, Nicky Caiazza, Christopher D. Herring, Stephen R. Rogers, Frank Agbogbo
  • Publication number: 20140356921
    Abstract: The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.
    Type: Application
    Filed: September 28, 2012
    Publication date: December 4, 2014
    Applicant: Mascoma Corporation
    Inventors: Yu Deng, Daniel G. Olson, Johannes Pieter van Dijken, Arthur J. Shaw, IV, Aaron Argyros, Trisha Barrett, Nicky Caiazza, Christopher D. Herring, Stephen R. Rogers, Frank Agbogbo
  • Publication number: 20140322783
    Abstract: The present invention provides for the manipulation of cofactor usage in a recombinant host cell to increase the formation of desirable products. In some embodiments, the invention provides for a recombinant microorganism comprising a mutation in one or more native enzymes such that their cofactor specificity is altered in such a way that overall cofactor usage in the cell is balanced for a specified pathway and there is an increase in a specific product formation within the cell. In some embodiments, endogenous enzymes are replaced by enzymes with an alternate cofactor specificity from a different species.
    Type: Application
    Filed: November 30, 2012
    Publication date: October 30, 2014
    Inventors: Jonathan Lo, Adam M. Guss, Johannes P. Van Dijken, Arthur J. Shaw, IV, Daniel G. Olson, Christopher D. Herring
  • Patent number: 8765428
    Abstract: The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 1, 2014
    Assignee: Mascoma Corporation
    Inventors: Christopher D. Herring, Chaogang Liu, John Bardsley
  • Publication number: 20120028325
    Abstract: The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.
    Type: Application
    Filed: July 17, 2009
    Publication date: February 2, 2012
    Inventors: Christopher D. Herring, Chaogang Liu, John Bardsley
  • Patent number: 8043842
    Abstract: The present invention provides a bacterium having a genome that is genetically engineered to be at least 2 to 14% smaller than the genome of its native parent strain. A bacterium with a smaller genome can produce a commercial product more efficiently. The present invention also provides methods for deleting genes and other DNA sequences from a bacterial genome. The methods provide precise deletions and seldom introduces mutations to the genomic DNA sequences around the deletion sites. Thus, the methods can be used to generate a series of deletions in a bacterium without increasing the possibility of undesired homologous recombination within the genome. In addition, some of the methods provided by the present invention can also be used for replacing a region of a bacterial genome with a desired DNA sequence.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: October 25, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Frederick R. Blattner, Gyorgy Posfai, Christopher D. Herring, Guy Plunkett, Jeremy D. Glasner
  • Publication number: 20100092954
    Abstract: The present invention provides a method for discovering the basis of changes in the observable properties of organisms by subjecting an organism to selection. Individual organisms with observable differences will thus become more prevalent in a population during selection. The basis for the differences are then determined by identifying genetic differences among the individual organisms and the original organism, followed by evaluation of the effects of each genetic difference either alone or in combination by using site-directed mutagenesis followed by observation of the effects.
    Type: Application
    Filed: August 1, 2007
    Publication date: April 15, 2010
    Inventors: Bernhard Palsson, Christopher D. Herring
  • Patent number: 7303906
    Abstract: The present invention discloses that a bacterium having a genome that is genetically engineered to be at least 10% smaller than the genome of its native parent strain has better transformation competence. Specific E. coli strains, having significantly reduced genome sizes, are disclosed which are highly transformation competent. A medium and methodology is taught which enables transformation efficiencies to be increased further.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: December 4, 2007
    Assignees: Wisconsin Alumni Research Foundation, Scarab Genomics, LLC
    Inventors: Frederick R. Blattner, Gyorgy Posfai, Christopher D. Herring, Guy Plunkett, III, Jeremy Glasner, Trevor Twose
  • Patent number: 6989265
    Abstract: The present invention provides a bacterium having a genome that is genetically engineered to be at least 2 to 14% smaller than the genome of its native parent strain. A bacterium with a smaller genome can produce a commercial product more efficiently. The present invention also provides methods for deleting genes and other DNA sequences from a bacterial genome. The methods provide precise deletions and seldom introduces mutations to the genomic DNA sequences around the deletion sites. Thus, the methods can be used to generate a series of deletions in a bacterium without increasing the possibility of undesired homologous recombination within the genome. In addition, some of the methods provided by the present invention can also be used for replacing a region of a bacterial genome with a desired DNA sequence.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 24, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Frederick R. Blattner, Gyorgy Posfai, Christopher D. Herring, Guy Plunkett, III, Jeremy D. Glasner
  • Publication number: 20030138937
    Abstract: The present invention provides a bacterium having a genome that is genetically engineered to be at least 2 to 14% smaller than the genome of its native parent strain. A bacterium with a smaller genome can produce a commercial product more efficiently. The present invention also provides methods for deleting genes and other DNA sequences from a bacterial genome. The methods provide precise deletions and seldom introduces mutations to the genomic DNA sequences around the deletion sites. Thus, the methods can be used to generate a series of deletions in a bacterium without increasing the possibility of undesired homologous recombination within the genome. In addition, some of the methods provided by the present invention can also be used for replacing a region of a bacterial genome with a desired DNA sequence.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 24, 2003
    Inventors: Frederick R. Blattner, Gyorgy Posfai, Christopher D. Herring, Guy Plunkett, Jeremy D. Glasner