Patents by Inventor Christopher D. Thanos

Christopher D. Thanos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958909
    Abstract: Provided herein are antibodies comprising non-natural amino acid residues at site-specific positions, compositions comprising the antibodies, methods of their production and methods of their use. The antibodies are useful for methods of treatment and prevention, methods of detection and methods of diagnosis.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: April 16, 2024
    Assignee: Sutro Biopharma, Inc.
    Inventors: Christopher D. Thanos, Leslie McEvoy, Gang Yin, Kalyani Penta, Ramesh Baliga, Sunil Bajad, Sonia Pollitt, Chris Murray, Alex Steiner, Avinash Gill
  • Patent number: 11779612
    Abstract: Provided are delivery immunostimulatory bacteria that have enhanced colonization of tumors, the tumor microenvironment and/or tumor-resident immune cells, and enhanced anti-tumor activity. The immunostimulatory bacteria are modified by deletion of genes encoding the flagella or modification of the genes so that functional flagella are not produced, and/or are modified by deletion of pagP or modification of pagP to produce inactive PagP product. As a result, the immunostimulatory bacteria are flagellin? and/or pagP?. The immunostimulatory bacteria optionally have additional genomic modifications so that the bacteria are adenosine or purine auxotrophs. The bacteria optionally are one or more of asd?, purI? and msbB?.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: October 10, 2023
    Assignee: ACTYM THERAPEUTICS, INC.
    Inventors: Christopher D. Thanos, Laura Hix Glickman, Justin Skoble, Alexandre Charles Michel Iannello
  • Publication number: 20230203470
    Abstract: Provided are variant adenosine deaminase 2 (ADA2) proteins, conjugates thereof and compositions containing the proteins and/or conjugates. Also provided are methods and uses of the ADA2 proteins or conjugates for treating diseases and conditions, such as a tumor or cancer, and in particular any disease or condition associated with elevated adenosine or other associated marker.
    Type: Application
    Filed: November 28, 2022
    Publication date: June 29, 2023
    Inventors: Christopher D. THANOS, Lin WANG, H. Michael SHEPARD
  • Publication number: 20230139442
    Abstract: Provided herein are modified amino acids comprising an azido group, polypeptides, antibodies and conjugates comprising the modified amino acids, and methods of producing the polypeptides, antibodies and conjugates comprising the modified amino acids. The polypeptides, antibodies and conjugates are useful in methods of treatment and prevention, methods of detection and methods of diagnosis.
    Type: Application
    Filed: December 17, 2022
    Publication date: May 4, 2023
    Inventors: Ryan Stafford, Christopher D. THANOS, Wenijin YANG
  • Publication number: 20230114070
    Abstract: Provided herein are antibodies comprising multiple non-natural amino acid residues at site-specific positions, compositions comprising the antibodies, methods of their production and methods of their use. The antibodies are useful for methods of treatment and prevention, methods of detection and methods of diagnosis.
    Type: Application
    Filed: April 22, 2022
    Publication date: April 13, 2023
    Inventors: Christopher D. THANOS, Ramesh BALIGA, Kalyani PENTA, Avinash GILL, Gang YIN, Erik ZIMMERMAN
  • Publication number: 20230072505
    Abstract: Provided are delivery immunostimulatory bacteria that have enhanced colonization of tumors, the tumor microenvironment and/or tumor-resident immune cells, and enhanced anti-tumor activity. The immunostimulatory bacteria are modified by deletion of genes encoding the flagella, or by modification of the genes so that functional flagella are not produced, and/or are modified by deletion of pagP or modification of pagP to produce inactive PagP product. As a result, the immunostimulatory bacteria are flagellin? and/or pagP?. The immunostimulatory bacteria optionally have additional genomic modifications so that the bacteria are adenosine or purine auxotrophs. The bacteria optionally are one or more of asd?, purI?, and msbB?.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 9, 2023
    Inventors: Christopher D. THANOS, Laura Hix GLICKMAN, Justin SKOBLE, Alexandre Charles Michel IANNELLO
  • Patent number: 11584923
    Abstract: Provided are variant adenosine deaminase 2 (ADA2) proteins, conjugates thereof and compositions containing the proteins and/or conjugates. Also provided are methods and uses of the ADA2 proteins or conjugates for treating diseases and conditions, such as a tumor or cancer, and in particular any disease or condition associated with elevated adenosine or other associated marker.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: February 21, 2023
    Assignee: Halozyme, Inc.
    Inventors: Christopher D. Thanos, Lin Wang, H. Michael Shepard
  • Patent number: 11548852
    Abstract: Provided herein are modified amino acids comprising an azido group, polypeptides, antibodies and conjugates comprising the modified amino acids, and methods of producing the polypeptides, antibodies and conjugates comprising the modified amino acids. The polypeptides, antibodies and conjugates are useful in methods of treatment and prevention, methods of detection and methods of diagnosis.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: January 10, 2023
    Assignee: SUTRO BIOPHARMA, INC.
    Inventors: Ryan Stafford, Christopher D. Thanos, Wenjin Yang
  • Publication number: 20220380720
    Abstract: Provided are attenuated immunostimulatory bacteria with genomes that are modified to, for example, reduce toxicity and improve the anti-tumor activity, such as by increasing accumulation in the tumor microenvironment, particularly in tumor-resident myeloid cells, improving resistance to complement inactivation, reducing immune cell death, promoting adaptive immunity, and enhancing T-cell function. The increase in colonization of phagocytic cells improves the delivery of encoded therapeutic products to the tumor microenvironment and tumors, and permits, among other routes, systemic administration of the immunostimulatory bacteria.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 1, 2022
    Inventors: Laura Hix GLICKMAN, Christopher D. Thanos, Alexandre Charles Michel IANNELLO, Chris RAE, Haixing KEHOE, Bret Nicholas Peterson, Chingnam Cheung
  • Publication number: 20220280577
    Abstract: Provided are delivery immunostimulatory bacteria that have enhanced colonization of tumors, the tumor microenvironment and/or tumor-resident immune cells, and enhanced anti-tumor activity. The immunostimulatory bacteria are modified by deletion of genes encoding the flagella, or by modification of the genes so that functional flagella are not produced, and/or are modified by deletion of pagP or modification of pagP to produce inactive PagP product. As a result, the immunostimulatory bacteria are flagellin? and/or pagP?. The immunostimulatory bacteria optionally have additional genomic modifications so that the bacteria are adenosine or purine auxotrophs. The bacteria optionally are one or more of asd?, purI?, and msbB?.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 8, 2022
    Inventors: Christopher D. THANOS, Laura Hix Glickman, Justin Skoble, Alexandre Charles Michel Iannello
  • Patent number: 11344626
    Abstract: Provided herein are antibodies comprising multiple non-natural amino acid residues at site-specific positions, compositions comprising the antibodies, methods of their production and methods of their use. The antibodies are useful for methods of treatment and prevention, methods of detection and methods of diagnosis.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 31, 2022
    Assignee: SUTRO BIOPHARMA, INC.
    Inventors: Christopher D. Thanos, Ramesh Baliga, Kalyani Penta, Avinash Gill, Gang Yin, Erik Zimmerman
  • Publication number: 20220154136
    Abstract: Provided are modified STING proteins that have constitutive activity, and also can have lower NF-?B signaling activity compared to unmodified human STING. Combinations and compositions containing the modified STING proteins with immunostimulatory proteins also are provided. Also provided are immunostimulatory bacteria that encode the STING proteins and the combinations, where the immunostimulatory proteins are encoded as a polycistronic message. The immunostimulatory bacteria have genomes that are modified to, for example, reduce toxicity and improve the anti-tumor activity, such as by increasing accumulation in the tumor microenvironment, particularly in tumor-resident myeloid cells, improving resistance to complement inactivation, reducing immune cell death, promoting adaptive immunity, and enhancing T-cell function.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Inventors: Christopher D. THANOS, Laura Hix GLICKMAN, Alexandre Charles Michel IANNELLO, Chris RAE, Haixing KEHOE, Bret Nicholas PETERSON
  • Publication number: 20220135980
    Abstract: Provided are delivery immunostimulatory bacteria that have enhanced colonization of tumors, the tumor microenvironment and/or tumor-resident immune cells, and enhanced anti-tumor activity. The immunostimulatory bacteria are modified by deletion of genes encoding the flagella or by modification of the genes so that functional flagella are not produced, and/or are modified by deletion of pagP or modification of pagP to produce inactive PagP product. As a result, the immunostimulatory bacteria are flagellin? and/or pagP?. The immunostimulatory bacteria optionally have additional genomic modifications so that the bacteria are adenosine and/or purine auxotrophs. The bacteria optionally are one or more of asd?, purI? and msbB?.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 5, 2022
    Inventors: Christopher D. THANOS, Laura Hix GLICKMAN, Justin SKOBLE, Alexandre Charles Michel IANNELLO, Haixing KEHOE
  • Publication number: 20220119824
    Abstract: Provided are immunostimulatory bacteria with genomes that are modified to, for example, reduce toxicity and improve the anti-tumor activity, such as by increasing accumulation in the tumor microenvironment, particularly in tumor-resident myeloid cells, improving resistance to complement inactivation, reducing immune cell death, promoting adaptive immunity, and enhancing T-cell function. Also provided are immunostimulatory bacteria for use as vaccines, and for delivery of mRNA. The immunostimulatory bacterium comprise genome modifications resulting in an increase in colonization of phagocytic cells, which delivers encoded therapeutic products to phagocytic cells, and permits, among other routes, systemic administration of the immunostimulatory bacteria. The increase in colonization of phagocytic cells also provides for use of immunostimulatory bacteria for direct tissue administration for use as vaccines.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 21, 2022
    Inventors: Laura Hix GLICKMAN, Bret Nicholas PETERSON, Haixing KEHOE, Alexandre Charles Michel IANNELLO, Christopher D. THANOS
  • Publication number: 20220112501
    Abstract: Provided are immunostimulatory bacteria and oncolytic viruses, and pharmaceutical compositions containing the bacteria and/or viruses, that act as three prime repair exonuclease 1 (TREX1) antagonists. The bacteria and viruses are for treating tumors that are human papillomavirus (HPV) positive or that have a high tumor mutational burden (TMB). The immunostimulatory bacteria and oncolytic viruses encode therapeutic products such RNAi, such as shRNA and microRNA, that mediate gene disruption and/or inhibit expression of TREX1, or that inhibit TREX1. The bacteria contain additional modifications to enhance their anti-tumor activity. The bacteria and viruses are used for treatment of tumors in which TREX1 expression correlates with the presence of the tumor or properties of the tumor, such that inhibition of TREX1 advantageously treats the tumor.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Christopher D. Thanos, Laura Hix Glickman
  • Patent number: 11261219
    Abstract: The present disclosure provides modified proteins that are capable of being cleaved by the protease OmpT1. The proteins can be modified in an exposed surface motif to incorporate OmpT1 cleavage sites. Also provided are nucleic acids encoding the modified proteins, bacterial cells that express the modified proteins, and cell free synthesis systems containing modified RF1. The disclosure further provides methods for reducing the deleterious activity of a modified protein in a cell free synthesis system by contacting the modified protein with OmpT1. Also provided are methods for reducing RF1 competition at an amber codon in the cell free synthesis system, and methods for expressing a protein in the cell free synthesis system. The modified proteins of the invention can be used to increase the yield of proteins having non-natural amino acids incorporated at an amber codon.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 1, 2022
    Assignee: Sutro Biopharma, Inc.
    Inventors: Christopher D. Thanos, Christopher J. Murray, Junhao Yang, Heather Stephenson
  • Patent number: 11242528
    Abstract: Provided are immunostimulatory bacteria and oncolytic viruses, and pharmaceutical compositions containing the bacteria and/or viruses, that act as three prime repair exonuclease 1 (TREX1) antagonists. The bacteria and viruses are for treating tumors that are human papillomavirus (HPV) positive or that have a high tumor mutational burden (TMB). The immunostimulatory bacteria and oncolytic viruses encode therapeutic products such RNAi, such as shRNA and microRNA, that mediate gene disruption and/or inhibit expression of TREX1, or that inhibit TREX1. The bacteria contain additional modifications to enhance their anti-tumor activity. The bacteria and viruses are used for treatment of tumors in which TREX1 expression correlates with the presence of the tumor or properties of the tumor, such that inhibition of TREX1 advantageously treats the tumor.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: February 8, 2022
    Assignee: Actym Therapeutics, Inc.
    Inventors: Christopher D. Thanos, Laura Hix Glickman
  • Publication number: 20220017904
    Abstract: Provided are immunostimulatory bacteria and pharmaceutical compositions containing the bacteria. The immunostimulatory bacteria provided herein contain one or more modalities that enhance the anti-tumor activity of the immunostimulatory bacteria. Among the immunostimulatory bacteria provided are bacteria, such as Salmonella species, which are modified to be auxotrophic or are auxotrophic for adenosine and/or contain plasmids encoding RNAi, such as shRNA and microRNA, that mediate gene disruption and/or expression of immune checkpoints, such as TREX1, VISTA, PD-L1 and, genes that influence the immune system. The bacteria contain additional modifications to enhance their anti-tumor activity. Also provided are methods of inhibiting the growth or reducing the volume of a solid tumor by administering the pharmaceutical compositions.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 20, 2022
    Inventors: Christopher D. Thanos, Laura Hix Glickman, Justin Skoble
  • Patent number: 11168326
    Abstract: Provided are immunostimulatory bacteria and pharmaceutical compositions containing the bacteria. The immunostimulatory bacteria provided herein contain one or more modalities that enhance the anti-tumor activity of the immunostimulatory bacteria. Among the immunostimulatory bacteria provided are bacteria, such as Salmonella species, which are modified to be auxotrophic or are auxotrophic for adenosine and/or contain plasmids encoding RNAi, such as shRNA and microRNA, that mediate gene disruption and/or expression of immune checkpoints, such as TREX1, VISTA, PD-L1 and, genes that influence the immune system. The bacteria contain additional modifications to enhance their anti-tumor activity. Also provided are methods of inhibiting the growth or reducing the volume of a solid tumor by administering the pharmaceutical compositions.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: November 9, 2021
    Assignee: Actym Therapeutics, Inc.
    Inventors: Christopher D. Thanos, Laura Hix Glickman, Justin Skoble
  • Publication number: 20210054429
    Abstract: The present disclosure describes methods and systems for improving the expression of a properly folded, biologically active protein of interest in a cell free synthesis system. The methods and systems use a bacterial cell free extract having an active oxidative phosphorylation system, and include an exogenous protein chaperone. The exogenous protein chaperone can be expressed by the bacteria used to prepare the cell free extract. The exogenous protein chaperone can be a protein disulfide isomerase and/or a peptidyl-prolyl cis-trans isomerase. The inventors discovered that the combination of a protein disulfide isomerase and a peptidyl-prolyl cis-trans isomerase produces a synergistic increase in the amount of properly folded, biologically active protein of interest.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 25, 2021
    Inventors: Alice Yam, Dan Groff, Patrick Rivers, Christopher D. Thanos