Patents by Inventor Christopher Darby

Christopher Darby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240017481
    Abstract: Methods of additively manufacturing a three-dimensional object include irradiating a first build plane region using a first energy beam defining a beam diameter, the first energy beam travelling along a first oscillating path in a first direction to consolidate a first wall defining a thickness perpendicular to the first direction, wherein a build material adjacent a first side of the first wall and the build material adjacent a second side of the first wall, opposite the first side of the first wall, remains unconsolidated; and wherein the thickness of the first wall is greater than the beam diameter.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Inventors: Victor Petrovich Ostroverkhov, Christopher Darby Immer, Thomas Charles Adcock, Justin John Gambone, Daniel Jason Erno, Brian Scott McCarthy, John Joseph Madelone, JR.
  • Publication number: 20240017482
    Abstract: Methods of additively manufacturing a three-dimensional object include irradiating a first build plane region using a first energy beam, irradiating a second build plane region using a second energy beam, and irradiating an interlace region between the first build plane region and the second build plane region. Irradiating the interlace region comprises directing the first energy beam along a first oscillating path and directing the second energy beam along a second oscillating path intersecting and overlapping with the first oscillating path.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Inventors: Christopher Darby Immer, Robert John Filkins, Victor Petrovich Ostroverkhov, Michael Robert Tucker
  • Publication number: 20240017327
    Abstract: Additive manufacturing methods and systems are disclosed including irradiation devices for an additive manufacturing machine for additively manufacturing three-dimensional objects. The irradiation device includes a beam generation device configured to provide an energy beam travelling on a nominal beam path trajectory and an optical modulator comprising a reflective optic downstream from the beam generating device, wherein the optical modulator is configured to actuate the reflective optic to modify a position of the energy beam from the nominal beam path trajectory. The irradiation device further includes an optical scanner disposed downstream from the optical modulator, wherein the optical scanner is configured to translate the nominal beam path trajectory along a build plane of the additive manufacturing machine.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 18, 2024
    Inventors: Christopher Darby Immer, Robert John Filkins, Victor Petrovich Ostroverkhov, Younkoo Jeong, Thomas Charles Adcock, Christopher J. Klapper
  • Publication number: 20210246875
    Abstract: A method for optimizing wake management in a wind farm includes receiving, via one or more position localization sensors, position data from at least one nacelle of wind turbines in the wind farm. The method also includes determining angle of the nacelle(s) of the wind turbines with respect to true north based on the position data. Moreover, the method includes determining a wind direction at the nacelle(s) of the wind turbines. As such, the method includes generating a wake estimation model of the wind farm in real-time using the wind direction and the angle of the nacelle(s). In addition, the method includes running the wake estimation model to determine one or more optimal operating parameters for the wind turbines that maximize energy production of the wind turbine. Thus, the method includes operating the wind farm using the optimal operating parameter(s) so as to optimize wake management of the wind farm.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 12, 2021
    Inventors: Xu Fu, Bernard P. Landa, Christopher Darby Immer, Samuel Bryan Shartzer
  • Patent number: 9305703
    Abstract: A wire disposing assembly having a support, an axial traverser sub-assembly, a support arm, and a linear stage is provided. The support is configured to receive a plurality of turns of a wire, where the support is configured to rotate. The axial traverser sub-assembly is operatively coupled to the support. Further, a rate of motion of the axial traverser sub-assembly is coupled to a speed of rotation of the support. The support arm includes a resin unit configured to dispose resin on at least a portion of the wire, and a wire disposing device configured to guide a portion of the wire being disposed on a surface of the support. The linear stage is operatively coupled to the support arm.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 5, 2016
    Assignee: General Electric Company
    Inventors: Pierino Gianni Bonanni, Paul St. MarkShadforth Thompson, Martin Kin-Fei Lee, Christopher Darby Immer, Russell Stephen DeMuth, Jonathan Sebastian Janssen, Danny William Johnson, Evangelos Trifon Laskaris, Owen Scott Quirion
  • Patent number: 9201128
    Abstract: A system for producing precision magnetic coil windings is provided. The system includes a wire disposing assembly having a support, an axial traverser sub-assembly, and a support arm. The support is configured to receive a plurality of turns of a wire. The axial traverser sub-assembly is operatively coupled to the support. The support arm includes a wire disposing device. The system further includes a linear stage, a monitoring unit, a feedback unit, and a controller unit. The linear stage is operatively coupled to the support arm. Moreover, the controller unit is configured to axially position an incoming portion of the wire and provide reference trajectories for tracking.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: December 1, 2015
    Assignee: General Electric Company
    Inventors: Pierino Gianni Bonanni, Paul St. Mark Shadforth Thompson, Martin Kin-Fei Lee, Christopher Darby Immer, Russell Stephen DeMuth, Jonathan Sebastian Janssen, Danny William Johnson, Evangelos Trifon Laskaris, Owen Scott Quirion
  • Publication number: 20150076271
    Abstract: A wire disposing assembly having a support, an axial traverser sub-assembly, a support arm, and a linear stage is provided. The support is configured to receive a plurality of turns of a wire, where the support is configured to rotate. The axial traverser sub-assembly is operatively coupled to the support. Further, a rate of motion of the axial traverser sub-assembly is coupled to a speed of rotation of the support. The support arm includes a resin unit configured to dispose resin on at least a portion of the wire, and a wire disposing device configured to guide a portion of the wire being disposed on a surface of the support. The linear stage is operatively coupled to the support arm.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: General Electric Company
    Inventors: Pierino Gianni Bonanni, Paul St. MarkShadforth Thompson, Martin Kin-Fei Lee, Christopher Darby Immer, Russell Stephen DeMuth, Jonathan Sebastian Janssen, Danny William Johnson, Evangelos Trifon Laskaris, Owen Scott Quirion
  • Publication number: 20150075670
    Abstract: A system for producing precision magnetic coil windings is provided. The system includes a wire disposing assembly having a support, an axial traverser sub-assembly, and a support arm. The support is configured to receive a plurality of turns of a wire. The axial traverser sub-assembly is operatively coupled to the support. The support arm includes a wire disposing device. The system further includes a linear stage, a monitoring unit, a feedback unit, and a controller unit. The linear stage is operatively coupled to the support arm. Moreover, the controller unit is configured to axially position an incoming portion of the wire and provide reference trajectories for tracking.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: General Electric Company
    Inventors: Pierino Gianni Bonanni, Paul St. Mark Shadforth Thompson, Martin Kin-Fei Lee, Christopher Darby Immer, Russell Stephen DeMuth, Jonathan Sebastian Janssen, Danny William Johnson, Evangelos Trifon Laskaris, Owen Scott Quirion
  • Publication number: 20050239351
    Abstract: A planing amphibious vehicle has at least one trim tab at its stern. A vehicle control system includes a mode change controller and a trim tab controller. The mode change controller informs the trim tab controller when a mode change event is taking place. The trim tab controller retracts the trim tabs if the mode change is from marine to land mode; and deploys the tabs if the change is from land mode to marine mode, to assist the vehicle in rising on to the plane. The controller may also retract the tabs if the vehicle reverses; and deploy the tabs if a change is made from reverse to forward motion. The vehicle control system may connect to actuators and sensors for retractable road wheels, which may use hydropneumatic struts. Safeguards against system faults and/or erroneous switch operation are included. Road wheel drive decouples are used; a marine drive decoupler may also be fitted.
    Type: Application
    Filed: May 6, 2004
    Publication date: October 27, 2005
    Inventors: Christopher Darby, Roger Pease
  • Publication number: 20050170710
    Abstract: Amphibious vehicle has at least one system which is actuated or has its mode of operation changed when the vehicle changes from land mode to water mode or vice versa. The vehicle comprises sensor means which produce an output signal which varies in relation to the proportion of the mass of the vehicle which is buoyantly supported by a body of water. The sensors may sense the position of a wheel relative to the body of the vehicle. This may be achieved by checking the position of a suspension member. The sensor means may comprise a linear sensor or a rotary sensor. The sensor may comprise a potentiometer. Control means may average the output of the sensor over time. Where several sensors are used, control means may process output signals from each sensor to provide an overall output signal. A water presence sensor, such as a thermistor, may be used to provide a second control signal.
    Type: Application
    Filed: November 27, 2002
    Publication date: August 4, 2005
    Inventors: Christopher Darby, Timothy Goodwin
  • Publication number: 20050034911
    Abstract: Amphibious vehicle (1, FIG. 1) has retractable road wheels (2, 2?, FIG. 1). This may allow planing. During marine travel, at least one wheel may droop below the water line. This increases drag, particularly when cornering. Suspension height sensor 22 may be arranged to detect a threshold beyond which the wheel should not be allowed to droop over water, unless mode change is in progress. When this threshold is passed, pump 18 co-operates with controller 15 to pump fluid into lower chamber 7? of actuator 5 to retract the wheel. Switchable valves 9, 19, 21, and 23 are provided to allow adjustment of fluid chamber volumes. Gas filled accumulators 11 may be provided where a hydraulic suspension is used. Numeral 42 represents an adjustable trim tab. FIG. 4 shows an alternative fluid system layout, with valves 19, 19?, and 110 to allow fluid to be returned to tank 18?.
    Type: Application
    Filed: May 21, 2004
    Publication date: February 17, 2005
    Inventor: Christopher Darby