Patents by Inventor Christopher E. Bunker

Christopher E. Bunker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10384937
    Abstract: A method of generating hydrogen gas from the reaction of stabilized aluminum nanoparticles with water is provided. The stabilized aluminum nanoparticles are synthesized from decomposition of an alane precursor in the presence of a catalyst and an organic passivation agent, and exhibit stability in air and solvents but are reactive with water. The reaction of the aluminum nanoparticles with water produces a hydrogen yield of at least 85%.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: August 20, 2019
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Christopher E. Bunker, K. A. Shiral Fernando, Elena A. Guliants, Marcus J. Smith, Barbara A. Harruff
  • Patent number: 9403112
    Abstract: A system and device for filtering fluids using graphene oxide (GO) is provided. GO-based filters may be used for the efficient removal of microorganisms from organic and aqueous liquids and may be used to prevent fuel biodeterioration. Functionalization of graphene oxide with reactive oxygen functional groups provides physical properties to the GO including high solubility in polar solvents, good colloidal properties, low production costs, low toxicity, and a large surface area which can be decorated with antimicrobial agents including nanosilver. GO may be used as a filtration media for efficient removal of bacteria and to remove small amounts of water from hydrocarbon fuels. The GO filter media may be made of a plurality of GO particles, a structural core coated with GO, a non-porous structural membrane coated with GO, or a filtering membrane coated with GO. A method for sampling impurities found in an environmental sample is also provided.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: August 2, 2016
    Assignees: The United States of America As Represented By The Secretary of the Air Force, University of Dayton
    Inventors: Oscar N. Ruiz, K. A. Shiral Fernando, Christopher E. Bunker
  • Publication number: 20150266730
    Abstract: A method of generating hydrogen gas from the reaction of stabilized aluminum nanoparticles with water is provided. The stabilized aluminum nanoparticles are synthesized from decomposition of an alane precursor in the presence of a catalyst and an organic passivation agent, and exhibit stability in air and solvents but are reactive with water. The reaction of the aluminum nanoparticles with water produces a hydrogen yield of at least 85%.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 24, 2015
    Inventors: Christopher E. Bunker, K.A. Shiral Fernando, Elena A. Guliants, Marcus J. Smith, Barbara A. Harruff
  • Patent number: 9011572
    Abstract: A method of generating hydrogen gas from the reaction of stabilized aluminum nanoparticles with water is provided. The stabilized aluminum nanoparticles are synthesized from decomposition of an alane precursor in the presence of a catalyst and an organic passivation agent, and exhibit stability in air and solvents but are reactive with water. The reaction of the aluminum nanoparticles with water produces a hydrogen yield of at least 85%.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: April 21, 2015
    Assignee: University of Dayton
    Inventors: Christopher E. Bunker, K. A. Shiral Fernando, Elena A. Guliants, Marcus J. Smith, Barbara A. Haruff
  • Publication number: 20140199777
    Abstract: A system and device for filtering fluids using graphene oxide (GO) is provided. GO-based filters may be used for the efficient removal of microorganisms from organic and aqueous liquids and may be used to prevent fuel biodeterioration. Functionalization of graphene oxide with reactive oxygen functional groups provides physical properties to the GO including high solubility in polar solvents, good colloidal properties, low production costs, low toxicity, and a large surface area which can be decorated with antimicrobial agents including nanosilver. GO may be used as a filtration media for efficient removal of bacteria and to remove small amounts of water from hydrocarbon fuels. The GO filter media may be made of a plurality of GO particles, a structural core coated with GO, a non-porous structural membrane coated with GO, or a filtering membrane coated with GO. A method for sampling impurities found in an environmental sample is also provided.
    Type: Application
    Filed: July 12, 2013
    Publication date: July 17, 2014
    Inventors: Oscar N. Ruiz, K.A. Shiral Fernando, Christopher E. Bunker
  • Publication number: 20130330833
    Abstract: A system and device for filtering fluids using graphene oxide (GO) is provided. GO-based filters may be used for the efficient removal of microorganisms from organic and aqueous liquids and may be used to prevent fuel biodeterioration. Functionalization of graphene oxide with reactive oxygen functional groups provides physical properties to the GO including high solubility in polar solvents, good colloidal properties, low production costs, low toxicity, and a large surface area which can be decorated with antimicrobial agents including nanosilver. GO may be used as a filtration media for efficient removal of bacteria and to remove small amounts of water from hydrocarbon fuels. The GO filter media may be made of a plurality of GO particles, a structural core coated with GO, a non-porous structural membrane coated with GO, or a filtering membrane coated with GO. A method for sampling impurities found in an environmental sample is also provided.
    Type: Application
    Filed: July 12, 2013
    Publication date: December 12, 2013
    Inventors: Oscar N. Ruiz, K.A. Shiral Fernando, Christopher E. Bunker
  • Patent number: 7976589
    Abstract: Nanoscopic core-shell material additives for high temperature jet aviation fuels are disclosed. The nanometer dimensions of these core-shell material additives materials provide extremely large surface areas to promote chemical reactivity while permitting suspension in liquid fuels and providing unlimited access to all components of an aircraft fuel system. Core-shell technology involves additive encapsulation in a protective, fuel-mimicking shell material.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: July 12, 2011
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Christopher E. Bunker