Patents by Inventor Christopher Eric Barnhart

Christopher Eric Barnhart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230398001
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: June 2, 2023
    Publication date: December 14, 2023
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Patent number: 11707364
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for Reflex Parameter Modulation a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: July 25, 2023
    Assignee: Otto Bock Healthcare LP
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, Jr.
  • Publication number: 20220387205
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance, according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 8, 2022
    Inventors: Zhixiu Han, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Patent number: 11419747
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 23, 2022
    Assignee: Otto Bock Healthcare LP
    Inventors: Zhixiu Han, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, Jr.
  • Patent number: 11026815
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. A controller determines a desired torque based on the output, and controls the motor's torque based on the determined desired torque.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 8, 2021
    Assignee: OTTO BOCK HEALTHCARE LP
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon
  • Patent number: 10835408
    Abstract: A method for controlling a powered device to augment a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint is disclosed. In some embodiments, the method modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the actuator is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: November 17, 2020
    Assignee: Otto Bock HealthCare LP
    Inventors: Zhixiu Han, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, Jr.
  • Publication number: 20200146847
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for Reflex Parameter Modulation a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, JR.
  • Publication number: 20200146849
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Zhixiu Han, Christopher Eric Barnhart, David Adams Garlow, Adrienne Bolger, Hugh Miller Herr, Gary Girzon, Richard J. Casler, Jennifer T. McCarthy
  • Publication number: 20200107951
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: November 27, 2019
    Publication date: April 9, 2020
    Inventors: Zhixiu HAN, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Publication number: 20200085599
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Applicant: BionX Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10537449
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 21, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Zhixiu Han, Christopher Eric Barnhart, David Adams Garlow, Adrienne Bolger, Hugh Miller Herr, Gary Girzon, Richard J. Casler, Jennifer T. McCarthy
  • Patent number: 10531965
    Abstract: A time-dependent decay behavior is incorporated into one or more joint actuator control parameters during operation of a lower-extremity, prosthetic, orthotic or exoskeleton device. These parameters may include joint equilibrium joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent). The decay behavior may be exponential, linear, piecewise, or may conform to any other suitable function. Embodiments presented herein are used in a control system that emulates biological muscle-tendon reflex response providing for a natural walking experience. Further, joint impedance may depend on an angular rate of the joint. Such a relationship between angular rate and joint impedance may assist a wearer in carrying out certain activities, such as standing up and ascending a ladder.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 14, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Zhixiu Han, Christopher Eric Barnhart, Richard J. Casler, Jr.
  • Patent number: 10485682
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: November 26, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 10406002
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: September 10, 2019
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Publication number: 20170354529
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: May 22, 2017
    Publication date: December 14, 2017
    Inventors: Zhixiu HAN, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Publication number: 20170319369
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 9, 2017
    Inventors: Zhixiu Han, Christopher Williams, Jeff Anthony Weber, Christopher Eric Barnhart, Hugh M. Herr, Richard James Casler, JR.
  • Publication number: 20170250632
    Abstract: In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
    Type: Application
    Filed: March 15, 2017
    Publication date: August 31, 2017
    Inventors: Hugh Miller Herr, Christopher Williams, Christopher Eric Barnhart, Zhixiu Han, Charles E. Rohrs, Richard J. Casler, JR.
  • Patent number: 9737419
    Abstract: In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 22, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Christopher Williams, Christopher Eric Barnhart, Zhixiu Han, Charles E. Rohrs, Richard J. Casler, Jr.
  • Publication number: 20170216055
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: January 24, 2017
    Publication date: August 3, 2017
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 9693883
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step by using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle. In some embodiments, a series elastic element is connected in series with a motor that can drive the ankle, and at least one sensor is provided with an output from which a deflection of the series elastic element can be determined.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 4, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh Miller Herr, Richard J. Casler, Jr., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon