Patents by Inventor Christopher Ewan Gillespie

Christopher Ewan Gillespie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230123406
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Patent number: 11565114
    Abstract: An example of a system may include a processor, and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of patient input, clinician input, or automatic input, use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set, and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 31, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Publication number: 20220355106
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 10, 2022
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 11420065
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 23, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 11376435
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: July 5, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Publication number: 20200353264
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: May 27, 2020
    Publication date: November 12, 2020
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Patent number: 10589099
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: March 17, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20190381319
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20190290906
    Abstract: A method of treating an ailment suffered by a patient using one or more electrodes adjacent spinal column tissue of the patient, comprises delivering electrical modulation energy from the one or more electrodes to the spinal column tissue in accordance with a continuous bi-phasic waveform having a positive phase and a negative phase, thereby modulating the spinal column tissue to treat the ailment. An implantable electrical modulation system, comprises one or more electrical terminals configured for being coupled to one or more modulation leads, output modulation circuitry capable of outputting electrical modulation energy to the electrical terminal(s) in accordance with a continuous bi-phasic waveform, and control circuitry configured for modifying a shape of the continuous bi-phasic waveform, thereby changing the characteristics of the electrical modulation energy outputted to the electrode(s).
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Kerry Bradley, Rafael Carbunaru, Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie
  • Patent number: 10029102
    Abstract: A neuromodulation system and method of providing therapy to a patient. Electrical energy is delivered to the patient in accordance with a modulation parameter, thereby providing therapy to the patient, and the modulation parameter of the delivered electrical energy is varied over a period of time, such that the delivered electrical energy is continually maintained at a sub-threshold level throughout the period of time. The sub-threshold level may be referred to as a patient-perception threshold, which may be referred to as a boundary below which a patient does not sense delivery of the electrical energy. For example, in a spinal cord modulation system, the patient-perception threshold may be a boundary below which a patient does not experience paresthesia.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: July 24, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Jordi Parramon, Sridhar Kothandaraman, Christopher Ewan Gillespie, Sarvani Grandhe
  • Patent number: 9849285
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: December 26, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20170136243
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20170080234
    Abstract: An example of a system may include a processor; and a memory device comprising instructions, which when executed by the processor, cause the processor to access at least one of: patient input, clinician input, or automatic input; use the patient input, clinician input, or automatic input in a search method, the search method designed to evaluate a plurality of candidate neuromodulation parameter sets to identify an optimal neuromodulation parameter set; and program a neuromodulator using the optimal neuromodulation parameter set to stimulate a patient.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 23, 2017
    Inventors: Christopher Ewan Gillespie, Michael A. Moffitt, Que T. Doan, Changfang Zhu
  • Publication number: 20160129247
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: January 18, 2016
    Publication date: May 12, 2016
    Inventors: Dongchul Lee, Michael A. Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 9238138
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: January 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Publication number: 20140364920
    Abstract: A neuromodulation system and method of providing therapy to a patient. Electrical energy is delivered to the patient in accordance with a modulation parameter, thereby providing therapy to the patient, and the modulation parameter of the delivered electrical energy is varied over a period of time, such that the delivered electrical energy is continually maintained at a sub-threshold level throughout the period of time. The sub-threshold level may be referred to as a patient-perception threshold, which may be referred to as a boundary below which a patient does not sense delivery of the electrical energy. For example, in a spinal cord modulation system, the patient-perception threshold may be a boundary below which a patient does not experience paresthesia.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Inventors: Que T. Doan, Jordi Parramon, Sridhar Kothandaraman, Christopher Ewan Gillespie, Dongchul Lee, Sarvani Grandhe
  • Publication number: 20120004707
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Dongchul Lee, Michael Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 8036754
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 11, 2011
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dongchul Lee, Michael Moffitt, Christopher Ewan Gillespie, Kerry Bradley
  • Patent number: 7787960
    Abstract: An electrical lead anchoring assembly comprising a body comprising at least one recess and at least one channel there through for receiving at least one electrical lead, at least one arm pivotably coupled to the body and moveable between an open and a closed position wherein the arm is at least partially disposed within the recess such that the arm intrudes into the channel and frictionally abuts at least a portion of the length of electrical lead disposed in the channel to couple the lead to the body.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Timothy R. Lubenow, Kenny Kinyen Chinn, Christopher Ewan Gillespie, John M. Barker
  • Publication number: 20090024189
    Abstract: A method, electrical tissue stimulation system, and programmer for providing therapy to a patient are provided. Electrodes are placed adjacent tissue (e.g., spinal cord tissue) of the patient, electrical stimulation energy is delivered from the electrodes to the tissue in accordance with a defined waveform, and a pulse shape of the defined waveform is modified, thereby changing the characteristics of the electrical stimulation energy delivered from the electrode(s) to the tissue. The pulse shape may be modified by selecting one of a plurality of different pulse shape types or by adjusting a time constant of the pulse shape.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 22, 2009
    Inventors: Dongchul Lee, Michael Moffitt, Christopher Ewan Gillespie, Kerry Bradley