Patents by Inventor Christopher F. Bevis

Christopher F. Bevis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823883
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 21, 2023
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Christopher F. Bevis, Yungman Alan Liu, David Allen Reed, Eli Cheifetz, Amit Weingarten, Alexander Kadyshevitch
  • Patent number: 11474016
    Abstract: A particle monitoring device includes a camera sensor for imaging particles, a set of light sources, and an optical component. A first light source provides light of a first color component. A second light source provides light of a second color component. The optical component receives light of the first color component in a first direction from the first light source, and redirects the light of the first color component in an output direction towards the particles to illuminate the particles using light of the first color component. The optical component receives light of a second color component in a second direction, different from the first direction, from the second light source, and redirects the light of the second color component in the output direction towards the particles to illuminate the particles using light of the second color component.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: October 18, 2022
    Assignee: SCANIT TECHNOLOGIES, INC.
    Inventors: Joel Kent, Christopher F. Bevis
  • Patent number: 11183377
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 23, 2021
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Christopher F. Bevis, Yungman Alan Liu, David Allen Reed, Eli Cheifetz, Amit Weingarten, Alexander Kadyshevitch
  • Patent number: 9607802
    Abstract: One embodiment relates to an apparatus for aberration correction in an electron beam lithography system. An inner electrode surrounds a pattern generating device, and there is at least one outer electrode around the inner electrode. Each of the inner and outer electrodes has a planar surface in a plane of the pattern generating device. Circuitry is configured to apply an inner voltage level to the inner electrode and at least one outer voltage level to the at least one outer electrode. The voltage levels may be set to correct a curvature of field in the electron beam lithography system. Another embodiment relates to an apparatus for aberration correction used in an electron based system, such as an electron beam inspection, or review, or metrology system. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 28, 2017
    Assignee: KLA-Tencor Corporation
    Inventor: Christopher F. Bevis
  • Patent number: 8933425
    Abstract: One embodiment relates to an apparatus for aberration correction in an electron beam lithography system. An inner electrode surrounds a pattern generating device, and there is at least one outer electrode around the inner electrode. Each of the inner and outer electrodes has a planar surface in a plane of the pattern generating device. Circuitry is configured to apply an inner voltage level to the inner electrode and at least one outer voltage level to the at least one outer electrode. The voltage levels may be set to correct a curvature of field in the electron beam lithography system. Another embodiment relates to an apparatus for aberration correction used in an electron based system, such as an electron beam inspection, or review, or metrology system. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: January 13, 2015
    Assignee: KLA-Tencor Corporation
    Inventor: Christopher F. Bevis
  • Patent number: 8831767
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Grant
    Filed: August 27, 2011
    Date of Patent: September 9, 2014
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 8692204
    Abstract: One embodiment disclosed relates a method of detecting a patterned electron beam. The patterned electron beam is focused onto a grating with a pattern that has a same pitch as the patterned electron beam. Electrons of the patterned electron beam that pass through the grating un-scattered are detected. Another embodiment relates to focusing the patterned electron beam onto a grating with a pattern that has a second pitch that is different than a first pitch of the patterned electron beam. Electrons of the patterned electron beam that pass through the grating form a Moiré pattern that is detected using a position-sensitive detector. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 8, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Shinichi Kojima, Christopher F. Bevis, Joseph Maurino, William M. Tong
  • Patent number: 8422010
    Abstract: Methods and systems for determining a characteristic of a wafer are provided. One method includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The method also includes determining the characteristic of the wafer using the second output. One system includes an inspection subsystem configured to illuminate the wafer and to generate output responsive to light from the wafer. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The system also includes a processor configured to determine the characteristic of the wafer using the second output.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 16, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Michael D. Kirk, Christopher F. Bevis, David Adler, Kris Bhaskar
  • Publication number: 20130035877
    Abstract: Methods and systems for determining a characteristic of a wafer are provided. One method includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The method also includes determining the characteristic of the wafer using the second output. One system includes an inspection subsystem configured to illuminate the wafer and to generate output responsive to light from the wafer. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The system also includes a processor configured to determine the characteristic of the wafer using the second output.
    Type: Application
    Filed: September 12, 2012
    Publication date: February 7, 2013
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Michael D. Kirk, Christopher F. Bevis, David Adler, Kris Bhaskar
  • Publication number: 20120281275
    Abstract: Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Samuel Ngai, Christopher F. Bevis, Stefano Concina, John Fielden, Walter Mieher, Dieter Mueller, Neil Richardson, Dan Wack, Larry Wagner
  • Patent number: 8284394
    Abstract: Methods and systems for determining a characteristic of a wafer are provided. One method includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The method also includes determining the characteristic of the wafer using the second output. One system includes an inspection subsystem configured to illuminate the wafer and to generate output responsive to light from the wafer. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. The system also includes a processor configured to determine the characteristic of the wafer using the second output.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: October 9, 2012
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Michael D. Kirk, Christopher F. Bevis, David Adler, Kris Bhaskar
  • Publication number: 20110313558
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Application
    Filed: August 27, 2011
    Publication date: December 22, 2011
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 8010222
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 30, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 7940386
    Abstract: Embodiments of the invention include a target having a lattice of many periodically spaced and uniformly configured metrology features arranged in an array pattern over a target region. The lattice includes at least one defect region in the lattice, the defect region includes at least one intentionally introduced defect metrology feature. The defect feature configured to enable increased sensitivity of the target to a selected parameter of interest. The invention further encompassing associated methods of implementing the target and evaluating the parameter of interest.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 10, 2011
    Assignee: KLA-Tencor Corporation
    Inventor: Christopher F. Bevis
  • Patent number: 7933016
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 26, 2011
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Patent number: 7873504
    Abstract: Computer-implemented methods, carrier media, and systems for creating a metrology target structure design for a reticle layout are provided. One computer-implemented method for creating a metrology target structure design for a reticle layout includes simulating how one or more initial metrology target structures will be formed on a wafer at different values of one or more parameters of one or more fabrication processes that will be used to form a metrology target structure on the wafer based on the one or more fabrication processes, one or more parameters of the wafer, and one or more initial metrology target structure designs. The method also includes simulating one or more spectra that will be produced by a predetermined metrology system configuration for each of the simulated one or more initial metrology target structures. In addition, the method includes creating the metrology target structure design based on the one or more spectra.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 18, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Christopher F. Bevis
  • Patent number: 7847937
    Abstract: An optical measurement system includes a rotating element ellipsometer comprising a radiant source and a rotating optical element coupled to the radian source, an optical system to provide a modulated pump beam, a detection system optically coupled to the ellipsometer and a signal analyzer. The rotating element ellipsometer is configured to deliver a probe beam to a measurement spot on a sample and to measure one or more ellipsometric parameters of the sample at one or more discrete wavelengths or wavelength ranges, or a plurality of wavelengths across a wavelength range. Methods for determining sample characteristics from radiation scattered, reflected, diffracted or otherwise emitted from a sample surface using the optical measurement systems are also disclosed.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: December 7, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Christopher F. Bevis
  • Publication number: 20100279213
    Abstract: Methods and systems for controlling variation in dimensions of patterned features across a wafer are provided. One method includes measuring a characteristic of a latent image formed in a resist at more than one location across a wafer during a lithography process. The method also includes altering a parameter of the lithography process in response to the characteristic to reduce variation in dimensions of patterned features formed across the wafer by the lithography process. Altering the parameter compensates for non-time varying spatial variation in a temperature to which the wafer is exposed during a post exposure bake step of the lithography process and an additional variation in the post exposure bake step.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 4, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Michael Hanna, Dan Wack, John Fielden, Christopher F. Bevis, Larry Wagner
  • Patent number: 7808638
    Abstract: Embodiments of the invention include a SCOL targeting groups configured to increase target to target separation and thereby increase target utility to simultaneous exposures to multiple illumination dots and associated inspection methodologies. The embodiments of the invention further relate to apparatus for projection simultaneous illumination dots onto different targets of the same targeting group on a wafer to conduct multiple simultaneous target inspections. Embodiments of the invention further relate to methods used to inspect SCOL targets using simultaneous illumination dots directed onto different targets of the same targeting group to conduct multiple simultaneous target inspections.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 5, 2010
    Assignee: KLA-Tencor Corporation
    Inventor: Christopher F. Bevis
  • Publication number: 20100235114
    Abstract: Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Samuel Ngai, Christopher F. Bevis, Stefano Concina, John Fielden, Walter Mieher, Dieter Mueller, Neil Richardson, Dan Wack, Larry Wagner