Patents by Inventor Christopher F. Dean

Christopher F. Dean has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458394
    Abstract: A process for producing a product stream consisting primarily of the lower olefins ethylene, propylene and butylenes, and of gasoline is provided. The process includes cracking a mixture of paraffinic naphtha feedstream and regenerated catalyst in a downflow reactor. The reaction product stream is separated from the spent catalyst and subsequently fractionated into individual product streams, while the spent catalyst is regenerated and recycled.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 4, 2016
    Assignee: Saudi Arabian Oil Company
    Inventors: Christopher F. Dean, Allan Birkett Fox, Daniel C. Longstaff
  • Patent number: 9403155
    Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in the form of a separate particle in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: August 2, 2016
    Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERAL
    Inventors: Christopher F. Dean, Musaed Salem Musaed Al-Ghrami Al-Ghamdi, Khurshid K. Alam, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Patent number: 9211525
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 15, 2015
    Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Patent number: 8927451
    Abstract: Compositions and processes for their use as additives for reducing the sulfur content of FCC gasoline employ a support material montmorillonite clay material. A fluid catalytic cracking (FCC) mixture, therefore, is provided comprising an FCC catalyst and separate particles of sulfur reduction additive consisting of porous montmorillonite clay.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 6, 2015
    Assignees: Saudi Arabian Oil Company, King Fahd University of Pertroleum & Minerals
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Patent number: 8877042
    Abstract: The production of light hydrocarbons consisting of ethylene, propylene, butylenes, and of gasoline is enhanced by introducing a heavy oil feedstream derived from an external source into an ancillary downflow reactor that utilizes the same catalyst composition as an adjacent FCC unit for cracking the heavy oil and withdrawing the desired lighter hydrocarbon reaction product stream from the downflow reactor and regenerating the catalyst in the same regeneration vessel that is used to regenerate the spent catalyst from the FCC unit. The efficiency of the recovery of the desired lighter olefinic hydrocarbons is maximized by limiting the feedstream to the downflow reactor to heavy oils that can be processed under relatively harsher conditions, while minimizing production of undesired by-products.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: November 4, 2014
    Assignees: Saudi Arabian Oil Company, Nippon Oil Corporation
    Inventors: Christopher F. Dean, Yuichiro Fujiyama, Takata Okuhara
  • Publication number: 20140106958
    Abstract: Compositions and processes for their use as additives for reducing the sulfur content of FCC gasoline employ a support material montmorillonite clay material. A fluid catalytic cracking (FCC) mixture, therefore, is provided comprising an FCC catalyst and separate particles of sulfur reduction additive consisting of porous montmorillonite clay.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicants: King Fahd University of Petroleum & Minerals, Saudi Arabian Oil Company
    Inventors: Abdennour BOURANE, Omer Refa KOSEOGLU, Musaed Salem AL-GHRAMI, Christopher F. DEAN, Mohammed Abdul Bari SIDDIQUI, Shakeel AHMED
  • Patent number: 8623199
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: January 7, 2014
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Publication number: 20130210613
    Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in the form of a separate particle in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 15, 2013
    Applicants: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, Saudi Arabian Oil Company
    Inventors: Christopher F. DEAN, Musaed Salem Musaed Al-Ghrami AL-GHAMDI, Khurshid K. ALAM, Mohammed Abdul Bari SIDDIQUI, Shakeel AHMED
  • Publication number: 20130137909
    Abstract: A process for producing a product stream consisting primarily of the lower olefins ethylene, propylene and butylenes, and of gasoline is provided. The process includes cracking a mixture of paraffinic naphtha feedstream and regenerated catalyst in a downflow reactor. The reaction product stream is separated from the spent catalyst and subsequently fractionated into individual product streams, while the spent catalyst is regenerated and recycled.
    Type: Application
    Filed: July 27, 2012
    Publication date: May 30, 2013
    Inventors: Christopher F. DEAN, Allan Birkett FOX, Daniel C. LONGSTAFF
  • Patent number: 8409428
    Abstract: The present invention concerns a novel additive composition for reducing sulfur content of a catalytically cracked gasoline fraction. This additive composition comprises a support consisting of porous clay into which a first metal from group IVB is incorporated and a second metal from group IIB is impregnated. Preferably, the first incorporated metal is zirconium and the second impregnated metal is zinc. The sulfur reduction additive is used in combination with a conventional cracking catalyst in a fluidized catalytic cracking process to convert hydrocarbon feed stocks into gasoline having comparatively lower sulfur content and other liquid products.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 2, 2013
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Christopher F. Dean, Musaed Salem Musaed Al-Ghrami Al-Ghamdi, Khurshid K. Alam, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Publication number: 20110240520
    Abstract: The production of light hydrocarbons consisting of ethylene, propylene, butylenes, and of gasoline is enhanced by introducing a virgin paraffinic naphtha feedstream derived from an external source into an ancillary downflow reactor that utilizes the same catalyst composition as an adjacent FCC unit for cracking the naphtha and withdrawing the desired lighter hydrocarbon reaction product stream from the downflow reactor and regenerating the catalyst in the same regeneration vessel that is used to regenerate the spent catalyst from the FCC unit. The efficiency of the recovery of the desired lighter olefinic hydrocarbons is maximized by limiting the feedstream to the downflow reactor to paraffinic naphtha that can be processed under relatively harsher conditions, while minimizing production of undesired by-products and reducing the formation of coke on the catalyst.
    Type: Application
    Filed: June 9, 2011
    Publication date: October 6, 2011
    Inventor: Christopher F. Dean
  • Publication number: 20110226668
    Abstract: The production of light hydrocarbons consisting of ethylene, propylene, butylenes, and of gasoline is enhanced by introducing a heavy oil feedstream derived from an external source into an ancillary downflow reactor that utilizes the same catalyst composition as an adjacent FCC unit for cracking the heavy oil and withdrawing the desired lighter hydrocarbon reaction product stream from the downflow reactor and regenerating the catalyst in the same regeneration vessel that is used to regenerate the spent catalyst from the FCC unit. The efficiency of the recovery of the desired lighter olefinic hydrocarbons is maximized by limiting the feedstream to the downflow reactor to heavy oils that can be processed under relatively harsher conditions, while minimizing production of undesired by-products.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 22, 2011
    Inventors: Christopher F. DEAN, Yuichiro Fujiyama, Takata Okuhara
  • Publication number: 20110120912
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Application
    Filed: July 30, 2009
    Publication date: May 26, 2011
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Publication number: 20100032343
    Abstract: Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 11, 2010
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Musaed Salem Al-Ghrami, Christopher F. Dean, Mohammed Abdul Bari Siddiqui, Shakeel Ahmed
  • Publication number: 20080011645
    Abstract: The production of light hydrocarbons consisting of ethylene, propylene, butylenes, and of gasoline is enhanced by introducing a virgin paraffinic naphtha feedstream derived from an external source into an ancillary downflow reactor that utilizes the same catalyst composition as an adjacent FCC unit for cracking the naphtha and withdrawing the desired lighter hydrocarbon reaction product stream from the downflow reactor and regenerating the catalyst in the same regeneration vessel that is used to regenerate the spent catalyst from the FCC unit. The efficiency of the recovery of the desired lighter olefinic hydrocarbons is maximized by limiting the feedstream to the downflow reactor to paraffinic naphtha that can be processed under relatively harsher conditions, while minimizing production of undesired by-products and reducing the formation of coke on the catalyst.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 17, 2008
    Inventor: Christopher F. Dean
  • Publication number: 20080011644
    Abstract: The production of light hydrocarbons consisting of ethylene, propylene, butylenes, and of gasoline is enhanced by introducing a heavy oil feedstream derived from an external source into an ancillary downflow reactor that utilizes the same catalyst composition as an adjacent FCC unit for cracking the heavy oil and withdrawing the desired lighter hydrocarbon reaction product stream from the downflow reactor and regenerating the catalyst in the same regeneration vessel that is used to regenerate the spent catalyst from the FCC unit. The efficiency of the recovery of the desired lighter olefinic hydrocarbons is maximized by limiting the feedstream to the downflow reactor to heavy oils that can be processed under relatively harsher conditions, while minimizing production of undesired by-products.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 17, 2008
    Inventors: Christopher F. Dean, Yuichiro Fujiyama, Takata Okuhara