Patents by Inventor Christopher F. Keimel

Christopher F. Keimel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11676872
    Abstract: A through-glass via (TGV) formed in a glass substrate may comprise a metal plating layer formed in the TGV. The TGV may have a three-dimensional (3D) topology through the glass substrate and the metal plating layer conformally covering the 3D topology. The TGV may further comprise a barrier layer disposed over the metal plating layer, and a metallization layer disposed over the barrier layer. The metallization layer may be electrically coupled to the metal plating layer through the barrier layer. The barrier layer may comprise a metal-nitride film disposed on the metal plating layer that is electrically coupled to the metallization layer. The barrier layer may comprise a metal film disposed over the metal plating layer and over a portion of glass surrounding the TGV, and an electrically-insulating film disposed upon the metal film, the electrically-insulating film completely overlapping the metal plating layer and partially overlapping the metal film.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: June 13, 2023
    Assignee: MENLO MICROSYSTEMS, INC.
    Inventors: Jaeseok Jeon, Christopher F. Keimel, Chris Nassar, Andrew Minnick
  • Publication number: 20230064520
    Abstract: A method of fabricating and packaging an ohmic micro-electro-mechanical system (MEMS) switch device may comprise constructing the switch device on an insulating substrate. The switch device may have contacts that consist of a platinum-group metal. The method may further comprise forming an oxidized layer of the platinum-group metal on an outer surface of each of the one or more contacts. The method may further comprise bonding an insulating cap to the insulating substrate, to hermetically seal the switch device. The bonding may occur in an atmosphere that has a proportion of oxygen within a range of 0.5% to 30%, such that, after the switch device has been hermetically sealed within the sealed cavity, an atmosphere within the sealed cavity has a proportion of oxygen within the range of 0.5% to 30%. The platinum-group metal may be ruthenium, and the oxidized layer of the platinum-group metal may be ruthenium dioxide.
    Type: Application
    Filed: October 14, 2022
    Publication date: March 2, 2023
    Inventors: Andrew Minnick, Christopher F. Keimel, Xu Zhu
  • Patent number: 11501928
    Abstract: A method of fabricating and packaging an ohmic micro-electro-mechanical system (MEMS) switch device may comprise constructing the switch device on an insulating substrate. The switch device may have contacts that consist of a platinum-group metal. The method may further comprise forming an oxidized layer of the platinum-group metal on an outer surface of each of the one or more contacts. The method may further comprise bonding an insulating cap to the insulating substrate, to hermetically seal the switch device. The bonding may occur in an atmosphere that has a proportion of oxygen within a range of 0.5% to 30%, such that, after the switch device has been hermetically sealed within the sealed cavity, an atmosphere within the sealed cavity has a proportion of oxygen within the range of 0.5% to 30%. The platinum-group metal may be ruthenium, and the oxidized layer of the platinum-group metal may be ruthenium dioxide.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 15, 2022
    Assignee: MENLO MICROSYSTEMS, INC.
    Inventors: Andrew Minnick, Christopher F. Keimel, Xu Zhu
  • Publication number: 20210403317
    Abstract: A hermetically sealed component may comprise a glass substrate, a device with at least one electrical port associated with the glass substrate, and a glass cap. The glass cap may have at least one side wall. The glass cap may have a shaped void extending therethrough, from top surface of the glass cap to bottom surface of glass pillar. An electrically conductive plug may be disposed within the void, the plug configured to hermetically seal the void. The electrically conductive plug may be electrically coupled to the electrical port. The glass cap may be disposed on the glass substrate, with the at least one side wall disposed therebetween, to form a cavity encompassing the device. The side wall may contact the glass substrate and the glass cap to provide a hermetic seal, such that a first environment within the cavity is isolated from a second environment external to the cavity.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Xu Zhu, Darryl E. Evans, Christopher F. Keimel
  • Publication number: 20210391228
    Abstract: A through-glass via (TGV) formed in a glass substrate may comprise a metal plating layer formed in the TGV. The TGV may have a three-dimensional (3D) topology through the glass substrate and the metal plating layer conformally covering the 3D topology. The TGV may further comprise a barrier layer disposed over the metal plating layer, and a metallization layer disposed over the barrier layer. The metallization layer may be electrically coupled to the metal plating layer through the barrier layer. The barrier layer may comprise a metal-nitride film disposed on the metal plating layer that is electrically coupled to the metallization layer. The barrier layer may comprise a metal film disposed over the metal plating layer and over a portion of glass surrounding the TGV, and an electrically-insulating film disposed upon the metal film, the electrically-insulating film completely overlapping the metal plating layer and partially overlapping the metal film.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Jaeseok Jeon, Christopher F. Keimel, Chris Nassar, Andrew Minnick
  • Patent number: 11148935
    Abstract: A hermetically sealed component may comprise a glass substrate, a device with at least one electrical port associated with the glass substrate, and a glass cap. The glass cap may have at least one side wall. The glass cap may have a shaped void extending therethrough, from top surface of the glass cap to bottom surface of glass pillar. An electrically conductive plug may be disposed within the void, the plug configured to hermetically seal the void. The electrically conductive plug may be electrically coupled to the electrical port. The glass cap may be disposed on the glass substrate, with the at least one side wall disposed therebetween, to form a cavity encompassing the device. The side wall may contact the glass substrate and the glass cap to provide a hermetic seal, such that a first environment within the cavity is isolated from a second environment external to the cavity.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 19, 2021
    Assignee: Menlo Microsystems, Inc.
    Inventors: Xu Zhu, Darryl R. Evans, Christopher F. Keimel
  • Publication number: 20210304973
    Abstract: A method of fabricating and packaging an ohmic micro-electro-mechanical system (MEMS) switch device may comprise constructing the switch device on an insulating substrate. The switch device may have contacts that consist of a platinum-group metal. The method may further comprise forming an oxidized layer of the platinum-group metal on an outer surface of each of the one or more contacts. The method may further comprise bonding an insulating cap to the insulating substrate, to hermetically seal the switch device. The bonding may occur in an atmosphere that has a proportion of oxygen within a range of 0.5% to 30%, such that, after the switch device has been hermetically sealed within the sealed cavity, an atmosphere within the sealed cavity has a proportion of oxygen within the range of 0.5% to 30%. The platinum-group metal may be ruthenium, and the oxidized layer of the platinum-group metal may be ruthenium dioxide.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: Andrew Minnick, Christopher F. Keimel, Xu Zhu
  • Patent number: 7510946
    Abstract: A processing method for use in the fabrication of fabrication of nanoscale electronic, optical, magnetic, biological, and fluidic devices and structures, for filling nanoscale holes and trenches, for planarizing a wafer surface, or for achieving both filling and planarizing of a wafer surface simultaneously. The method has the initial step of depositing a layer of a meltable material on a wafer surface. The material is then pressed using a transparent mold while shining a light pulse through the transparent mold to melt the deposited layer of meltable material. A flow of the molten layer material fills the holes and trenches, and conforms to surface features on the transparent mold. The transparent mold is subsequently removed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 31, 2009
    Assignee: Princeton University
    Inventors: Stephen Y. Chou, Bo Cui, Christopher F. Keimel