Patents by Inventor Christopher Fairley

Christopher Fairley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080007726
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens.
    Type: Application
    Filed: August 14, 2007
    Publication date: January 10, 2008
    Applicant: KLA-Tencor Corporation
    Inventors: Christopher Fairley, Tao-Yi Fu, Gershon Perelman, Bin-Ming Tsai
  • Publication number: 20070115461
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens.
    Type: Application
    Filed: January 12, 2007
    Publication date: May 24, 2007
    Applicant: KLA-Tencor Corporation
    Inventors: Christopher Fairley, Tao-Yi Fu, Gershon Perelman, Bin-Ming Tsai
  • Publication number: 20070007429
    Abstract: A semiconductor wafer inspection system and method is provided which uses a multiple element arrangement, such as an offset fly lens array. The preferred embodiment uses a laser to transmit light energy toward a beam expander, which expands the light energy to create an illumination field. An offset fly lens array converts light energy from the illumination field into an offset pattern of illumination spots. A lensing arrangement, including a first lens, a transmitter/reflector, an objective, and a Mag tube imparts light energy onto the specimen and passes the light energy toward a pinhole mask. The pinhole mask is mechanically aligned with the offset fly lens array. Light energy passing through each pinhole in the pinhole mask is directed toward a relay lens, which guides light energy onto a sensor. The offset fly lens array corresponds to the pinhole mask.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 11, 2007
    Applicant: KLA-Tencor Corporation
    Inventors: Christopher Fairley, Tao-Yi Fu, Bin-Ming Tsai, Scott Young
  • Publication number: 20050156098
    Abstract: A semiconductor wafer inspection system and method is provided which uses a multiple element arrangement, such as an offset fly lens array. The preferred embodiment uses a laser to transmit light energy toward a beam expander, which expands the light energy to create an illumination field. An offset fly lens array converts light energy from the illumination field into an offset pattern of illumination spots. A lensing arrangement, including a first lens, a transmitter/reflector, an objective, and a Mag tube imparts light energy onto the specimen and passes the light energy toward a pinhole mask. The pinhole mask is mechanically aligned with the offset fly lens array. Light energy passing through each pinhole in the pinhole mask is directed toward a relay lens, which guides light energy onto a sensor. The offset fly lens array corresponds to the pinhole mask.
    Type: Application
    Filed: March 14, 2005
    Publication date: July 21, 2005
    Inventors: Christopher Fairley, Tao-Yi Fu, Bin-Ming Tsai, Scott Young
  • Publication number: 20050062962
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the Manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens.
    Type: Application
    Filed: November 4, 2004
    Publication date: March 24, 2005
    Inventors: Christopher Fairley, Tao Fu, Gershon Perelman, Bin-Ming Tsai