Patents by Inventor Christopher Fred

Christopher Fred has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8802475
    Abstract: A method of fabricating a microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is physically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 12, 2014
    Assignee: General Electric Company
    Inventors: Kaustubh Ravindra Nagarkar, Christopher Fred Keimel
  • Patent number: 8779886
    Abstract: A device, such as a switch structure, is provided. The switch structure can include a contact and a conductive element each respectively disposed on a substrate. The conductive element can be composed substantially of metallic material, and can be configured to be deformable between a first position, in which the conductive element is separated from the contact by a separation distance, and a second position, in which the conductive element contacts the contact and stores mechanical energy. The conductive element can be further configured such that, subsequent to being deformed into the second position at a temperature between about room temperature and about half of a melting temperature of the metallic material for a cumulative time of at least 107 seconds, the separation distance in the absence of external forces varies by less than 20 percent over the cumulative time. Associated methods are also provided.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 15, 2014
    Assignee: General Electric Company
    Inventors: Marco Francesco Aimi, Shubhra Bansal, Christopher Fred Keimel, Kuna Venkat Satya Rama Kishore, Sairam Sundaram, Parag Thakre
  • Publication number: 20140190831
    Abstract: A method of actuating a valve, comprises operatively coupling the valve with an electroosmotic pump; flowing a fluid through the electroosmotic pump; and generating a fluidic pressure of at least 0.75 PSI to actuate the valve, wherein the electroosmotic pump comprises one or more thin, porous, positive electroosmotic membranes and one or more thin porous, negative electroosmotic membranes; a plurality of electrodes comprising cathodes and anodes, and a power source; wherein each of the positive and negative electroosmotic membranes are disposed alternatively and wherein at least one of the cathodes is disposed on one side of one of the membranes and at least one of the anodes is disposed on the other side of the membrane and wherein at least one of the cathodes or anodes is disposed between a positive and a negative electroosmotic membrane.
    Type: Application
    Filed: December 7, 2013
    Publication date: July 10, 2014
    Applicant: General Electric Company
    Inventors: Christopher Michael Puleo, Christopher Fred Keimel, Craig Patrick Galligan
  • Publication number: 20140170811
    Abstract: A method of fabricating a microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is physically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: General Electric Company
    Inventors: Kaustubh Ravindra Nagarkar, Christopher Fred Keimel
  • Patent number: 8698258
    Abstract: A microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is physically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventors: Kaustubh Ravindra Nagarkar, Christopher Fred Keimel
  • Patent number: 8659326
    Abstract: A switching apparatus, as may be configured to actuate stacked MEMS switches, may include a switching circuitry (34) including a MEMS switch (36) having a beam (16) made up of a first movable actuator (17) and a second movable actuator (19) electrically connected by a common connector (20) and arranged to selectively establish an electrical current path through the first and second movable actuators in response to a gate control signal applied to the gates of the switch to actuate the movable actuators. The apparatus may further include a gating circuitry (32) to generate the gate control signal applied to gates of the switch. The gating circuitry may include a driver channel (40) electrically coupled to the common connector and may be adapted to electrically float with respect to a varying beam voltage, and may be electrically referenced between the varying beam voltage and a local electrical ground of the gating circuitry.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glenn Claydon, Christopher Fred Keimel, John Norton Park, Bo Li
  • Patent number: 8638093
    Abstract: A micro-electromechanical system (MEMS) device that in one embodiment includes at least two MEMS switches coupled to each other in a back-to-back configuration. The first and second suspended elements corresponding to first and second MEMS switches are electrically coupled. Further, first and second contacts corresponding to the first and second MEMS switches are configured such that a differential voltage between the second suspended element and the second contact is approximately equal to a differential voltage between the first suspended element and the first contact. The MEMS device includes at least one actuator coupled to one or more of the first and second suspended elements to actuate one or more of the first and the second suspended elements. In one example, the MEMS device includes one or more passive elements coupled to one or more of the first and second MEMS switches.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 28, 2014
    Assignee: General Electric Company
    Inventors: Marco Francesco Aimi, Joseph Alfred Iannotti, Christopher Fred Keimel, Steven YueHin Go
  • Patent number: 8610519
    Abstract: In accordance with one aspect of the present invention, a MEMS switch is provided. The MEMS switch includes a substrate, a first and a second actuating element electrically coupled together, an anchor mechanically coupled to the substrate and supporting at least one of the first and second actuating elements, and a gate driver configured to actuate the first and second actuating elements.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 17, 2013
    Assignee: General Electric Company
    Inventors: Christopher Fred Keimel, Xuefeng Wang, Marco Francesco Aimi, Kanakasabapathi Subramanian
  • Patent number: 8603834
    Abstract: A method of actuating a valve, comprises operatively coupling the valve with an electroosmotic pump; flowing a fluid through the electroosmotic pump; and generating a fluidic pressure of at least 0.75 PSI to actuate the valve, wherein the electroosmotic pump comprises one or more thin, porous, positive electroosmotic membranes and one or more thin porous, negative electroosmotic membranes; a plurality of electrodes comprising cathodes and anodes, and a power source; wherein each of the positive and negative electroosmotic membranes are disposed alternatively and wherein at least one of the cathodes is disposed on one side of one of the membranes and at least one of the anodes is disposed on the other side of the membrane and wherein at least one of the cathodes or anodes is disposed between a positive and a negative electroosmotic membrane.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Christopher Michael Puleo, Christopher Fred Keimel, Craig Patrick Galligan
  • Publication number: 20130232046
    Abstract: A consumer accesses a secure area of a transaction account website and provides their login information for retail websites. The transaction account issuer or a third party creates a script that logs in to the retail websites on behalf of the consumer and transmits transaction account information associated with the transaction account. The script sets the transaction account as the default payment method for the retail website. The transaction account information may be evergreen, such that whenever the transaction account information changes, the script updates the retail websites.
    Type: Application
    Filed: October 18, 2012
    Publication date: September 5, 2013
    Applicant: American Express Travel Related Services Company, Inc.
    Inventors: Cindy E. Chin, I-Hsin Chuang, Christopher Fred, Carrie L. Parker
  • Publication number: 20130153797
    Abstract: A method of actuating a valve, comprises operatively coupling the valve with an electroosmotic pump; flowing a fluid through the electroosmotic pump; and generating a fluidic pressure of at least 0.75 PSI to actuate the valve, wherein the electroosmotic pump comprises one or more thin, porous, positive electroosmotic membranes and one or more thin porous, negative electroosmotic membranes; a plurality of electrodes comprising cathodes and anodes, and a power source; wherein each of the positive and negative electroosmotic membranes are disposed alternatively and wherein at least one of the cathodes is disposed on one side of one of the membranes and at least one of the anodes is disposed on the other side of the membrane and wherein at least one of the cathodes or anodes is disposed between a positive and a negative electroosmotic membrane.
    Type: Application
    Filed: January 25, 2012
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Puleo, Christopher Fred Keimel, Craig Patrick Galligan
  • Publication number: 20130153425
    Abstract: An electroosmotic pump comprises a plurality of membranes comprising one or more positive electroosmotic membranes and one or more negative electroosmotic membranes, a plurality of electrodes comprising cathodes and anodes, and a power source. Each of the positive electroosmotic membranes and negative electroosmotic membranes are disposed alternatively and wherein at least one of the cathodes is disposed on one side of one of the membranes and at least one of the anodes is disposed on other side of the membrane. At least one of the cathodes or anodes is disposed between a positive electroosmotic membrane and negative electroosmotic membrane.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Puleo, Christopher Fred Keimel, Xiaohui Chen, Ralf Lenigk, Craig Patrick Galligan, Todd Frederick Miller
  • Publication number: 20130082376
    Abstract: A microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is phsyically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kaustubh Ravindra Nagarkar, Christopher Fred Keimel
  • Patent number: 8358488
    Abstract: A current control device is disclosed. The current control device includes control circuitry integrally arranged with a current path and at least one micro electromechanical system (MEMS) switch disposed in the current path. The current control device further includes a hybrid arcless limiting technology (HALT) circuit connected in parallel with the at least one MEMS switch facilitating arcless opening of the at least one MEMS switch, and a pulse assisted turn on (PATO) circuit connected in parallel with the at least one MEMS switch facilitating arcless closing of the at least one MEMS switch.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 22, 2013
    Assignee: General Electric Company
    Inventors: William James Premerlani, Kanakasabapathi Subramanian, Christopher Fred Keimel, Kathleen Ann O'Brien, John Norton Park
  • Patent number: 8354899
    Abstract: Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10?12 s?1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventors: Christopher Fred Keimel, Marco Francesco Aimi, Shubhra Bansal, Reed Roeder Corderman, Kuna Venkat Satya Rama Kishore, Eddula Sudhakar Reddy, Atanu Saha, Kanakasabapathi Subramanian, Parag Thakre, Alex David Corwin
  • Publication number: 20120249261
    Abstract: A micro-electromechanical system (MEMS) device that in one embodiment includes at least two MEMS switches coupled to each other in a back-to-back configuration. The first and second suspended elements corresponding to first and second MEMS switches are electrically coupled. Further, first and second contacts corresponding to the first and second MEMS switches are configured such that a differential voltage between the second suspended element and the second contact is approximately equal to a differential voltage between the first suspended element and the first contact. The MEMS device includes at least one actuator coupled to one or more of the first and second suspended elements to actuate one or more of the first and the second suspended elements. In one example, the MEMS device includes one or more passive elements coupled to one or more of the first and second MEMS switches.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Marco Francesco Aimi, Joseph Alfred Iannotti, Christopher Fred Keimel, Steven YueHin Go
  • Publication number: 20120047723
    Abstract: The Actuator Tool is designed to allow easy removal of saucer-shaped irrigation flow control devices known by many names such as irrigation actuators, automatic adapters, automators, etc., that are part of an irrigation valve assembly. The Actuator Tool has a unique design allowing it to circumvent the saucer-shaped diaphragm housing to allow easy access to said irrigation actuators' said grip point when the irrigation valve assembly is obstructed by a tree, wall, irrigation valve box, etc., or in cases where the irrigation valve assemblies have been installed too close together to allow access to the said actuators' hexagonal square or similar shaped said grip point. The preferred configuration is “U” shaped with a jaw on either end, two holes to accommodate a ½? drive breaker bar as a handle on both ends, and two flat areas to allow the use of a pipe wrench as a handle.
    Type: Application
    Filed: August 5, 2011
    Publication date: March 1, 2012
    Inventor: Christopher Fred Roach
  • Publication number: 20110316608
    Abstract: A switching array includes a plurality of switching elements electrically coupled to each other, each switching element being configured to be switched between conducting and non-conducting states. The switching array also includes at least one parasitic minimizing circuitry electrically coupled to the plurality of switching elements and configured to provide near zero electrical voltage and current across and through each of the plurality of switching elements during switching of the plurality of switching elements between the conducting and non-conducting states.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Fred Keimel, Kanakasabapathi Subramanian, John N. Park, William James Premerlani, Owen Jannis Samuel Schelenz
  • Patent number: 8054148
    Abstract: A device for controlling the flow of electric current is provided. The device comprises a first conductor as thin film form; a second conductor switchably coupled to the first conductor to alternate between an electrically connected state with the first conductor and an electrically disconnected state with the first conductor. At least one conductor further comprises an electrical contact, the electrical contact comprising a solid matrix comprising a plurality of pores; and a filler material disposed within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K. A method to make an electrical contact is provided. The method includes the steps of: providing a substrate; providing a plurality of pores on the substrate; and disposing a filler material within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Duraiswamy Srinivasan, Reed Roeder Corderman, Christopher Fred Keimel, Somasundaram Gunasekaran, Sudhakar Eddula Reddy, Arun Virupaksha Gowda, Kanakasabapathi Subramanian, Om Prakash
  • Patent number: 8054147
    Abstract: Electrostatic devices, systems and methods are presented. One embodiment is an electrostatic device including a substrate, a first electrode disposed on the substrate, a movable element having a second electrode and a control electrode. The control electrode is disposed in electrostatic communication with the movable element. The control electrode includes a protection layer having resistivity in a range of from about 1 ohm-cm to about 10 kohm-cm.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: David Cecil Hays, Christopher Fred Keimel, Marco Francesco Aimi