Patents by Inventor Christopher Hess

Christopher Hess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10199294
    Abstract: A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one side-to-side short or leakage, at least one via-chamfer short or leakage, and at least one corner short or leakage, where such measurements are obtained from cells with respective side-to-side short, via-chamfer short, and corner short test areas, using a charged particle-beam inspector with a moving stage and beam deflection to account for motion of the stage.
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: February 5, 2019
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10199283
    Abstract: A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of a resistance through a stitch, where such measurements are obtained by scanning a pad comprised of at least three electrically connected, parallel conductive stripes using a moving stage with beam deflection to account for motion of the stage.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 5, 2019
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10199289
    Abstract: A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one chamfer short or leakage, at least one corner short or leakage, and at least one via open or resistance, where such measurements are obtained from non-contact pads associated with respective chamfer short, corner short, and via open test areas.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: February 5, 2019
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10199286
    Abstract: A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one tip-to-side short or leakage, at least one chamfer short or leakage, and at least one corner short or leakage, where such measurements are obtained from non-contact pads associated with respective tip-to-side short, chamfer short, and corner short test areas.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: February 5, 2019
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10109539
    Abstract: An integrated circuit, in the form of a wafer, die, or chip, includes multiple standard cell-compatible fill cells, configured to enable non-contact electrical measurements. Such fill cells include mesh pads that contain at least three conductive stripes disposed between adjacent gate stripes. Such fill cells further include geometry to enable non-contact evaluation of tip-to-side shorts and/or leakages.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 23, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10096529
    Abstract: A process for making and using a semiconductor wafer includes instantiating first and second designs of experiments (DOES), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of via opens, and the second DOE contains fill cells configured to enable NC detection of metal island opens. The process may further include obtaining NC measurements from the first and/or second DOE(s) and using such measurements, at least in part, to selectively perform additional processing, metrology or inspection steps on the wafer, and/or on other wafer(s) currently being manufactured.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: October 9, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10096530
    Abstract: A process for making and using a semiconductor wafer includes instantiating first and second designs of experiments (DOES), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of merged-via opens, and the second DOE contains fill cells configured to enable NC detection of stitch opens. The process may further include obtaining NC measurements from the first and/or second DOE(s) and using such measurements, at least in part, to selectively perform additional processing, metrology or inspection steps on the wafer, and/or on other wafer(s) currently being manufactured.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: October 9, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Publication number: 20180209767
    Abstract: A target system includes a blocking plate with one or more openings through which bullets are fired and one or more targets for being struck by the bullets disposed behind the blocking plate and generally in line with the one or more openings. The target system includes a slotted bracket which limits the range of movement of the target after it has been struck by a projectile. The slotted bracket also provides for tool-less attachment and removal of the targets from the blocking plate.
    Type: Application
    Filed: January 31, 2018
    Publication date: July 26, 2018
    Inventors: Devin Anderson, Christopher Hess
  • Publication number: 20180202777
    Abstract: The present invention relates to systems and methods for accurately and safely directing the movement of shooting range targets, and more specifically, to provide self-calibration and synchronicity to programmable target carriers and automatically resetting targets.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 19, 2018
    Applicant: Action Target Inc.
    Inventors: Joseph Green, Cory Haflett, Tim Hakala, David Sharp, Christopher Hess, Devin Anderson
  • Publication number: 20180172409
    Abstract: A walking target may include a plurality of target impact areas which are oriented in at least two different planes so that a plurality of target impact areas rest on a surface and hold one target impact area generally upright. The walking target may be formed from a single piece of metal.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 21, 2018
    Applicant: Action Target Inc.
    Inventors: Devin Anderson, Christopher Hess
  • Patent number: 9984944
    Abstract: Wafers, chips, or dies that contain fill cells with structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). Such NCEM-enabled fill cells may target/expose a variety of open-circuit, short-circuit, leakage, or excessive resistance failure modes, including GATECNT-tip-to-side-short and/or GATECNT-tip-to-side-leakage failure modes. Such wafers, chips, or dies may include Designs of Experiments (“DOEs”), comprised of multiple NCEM-enabled fill cells, of at least two types, all targeted to the same failure mode.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 29, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9953889
    Abstract: Improved processes for manufacturing semiconductor wafers, chips, or dies utilize in-line data obtained from non-contact electrical measurements (“NCEM”) of fill cells that contain structures configured to target/expose a variety of open-circuit, short-circuit, leakage, and/or excessive resistance failure modes. Such processes include evaluating one or more Designs of Experiments (“DOEs”), each comprised of multiple NCEM-enabled fill cells, in at least two variants, targeted to the same failure mode. Such DOEs include multiple means/steps for enabling non-contact (NC) detection of GATECNT-GATE via opens.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 24, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9947601
    Abstract: An integrated circuit, in the form of a wafer, die, or chip, includes multiple standard cell-compatible fill cells, configured to enable non-contact electrical measurements. Such fill cells include mesh pads that contain at least three conductive stripes disposed between adjacent gate stripes. Such fill cells further include geometry to enable non-contact evaluation of side-to-side shorts and/or leakages.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 17, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9929136
    Abstract: A process for making and using a semiconductor wafer includes instantiating first and second designs of experiments (DOES), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of tip-to-side shorts, and the second DOE contains fill cells configured to enable NC detection of chamfer shorts. The process may further include obtaining NC measurements from the first and/or second DOE(s) and using such measurements, at least in part, to selectively perform additional processing, metrology or inspection steps on the wafer, and/or on other wafer(s) currently being manufactured.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 27, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9927216
    Abstract: A target system includes a blocking plate with one or more openings through which bullets are fired and one or more targets for being struck by the bullets disposed behind the blocking plate and generally in line with the one or more openings. The target system includes a slotted bracket which limits the range of movement of the target after it has been struck by a projectile. The slotted bracket also provides for tool-less attachment and removal of the targets from the blocking plate.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 27, 2018
    Assignee: Action Target Inc.
    Inventors: Devin Anderson, Christopher Hess
  • Patent number: 9929063
    Abstract: A process for making an integrated circuit, either in the form of a wafer, die, or chip, includes instantiating multiple standard cell-compatible fill cells, configured to enable non-contact electrical measurements. Such instantiated fill cells include mesh pads that contain at least three conductive stripes disposed between adjacent gate stripes. Such instantiated fill cells further include geometry to enable non-contact evaluation of Tip-to-Side shorts and/or leakages.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 27, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9922968
    Abstract: A process for making and using a semiconductor wafer includes instantiating first and second designs of experiments (DOEs), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of side-to-side shorts, and the second DOE contains fill cells configured to enable NC detection of chamfer shorts. The process may further include obtaining NC measurements from the first and/or second DOE(s) and using such measurements, at least in part, to selectively perform additional processing, metrology or inspection steps on the wafer, and/or on other wafer(s) currently being manufactured.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 20, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9922890
    Abstract: An integrated circuit, in the form of a wafer, die, or chip, includes multiple standard cell-compatible fill cells, configured to enable non-contact electrical measurements. Such fill cells include mesh pads that contain at least three conductive stripes disposed between adjacent gate stripes. Such fill cells further include geometry to enable non-contact evaluation of snake opens and/or resistances.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 20, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9911668
    Abstract: An integrated circuit, in the form of a wafer, die, or chip, includes multiple standard cell-compatible fill cells, configured to enable non-contact electrical measurements. Such fill cells include mesh pads that contain at least three conductive stripes disposed between adjacent gate stripes. Such fill cells further include geometry to enable non-contact evaluation of corner shorts and/or leakages.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 6, 2018
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: D829231
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 25, 2018
    Inventors: Christopher Hess, David Sharp