Patents by Inventor Christopher Heung-Gyun Lee

Christopher Heung-Gyun Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140273763
    Abstract: In one embodiment, a method for cleaning a surface of a polishing pad includes conditioning the polishing pad surface and rotating the conditioned polishing pad surface. The method also includes spraying the polishing pad surface to lift debris from the conditioned polishing pad surface. The method further includes vacuuming the debris from the polishing pad surface downstream from where the condition occurs, wherein downstream is defined by a rotational direction of the polishing pad. In another embodiment, a processing station including a rotatable platen, a substrate carrier head, a polishing fluid delivery system, a conditioner, a spray nozzle, and a vacuum system is provided. The conditioner is disposed between the substrate carrier head and the spray nozzle. The vacuum system is configured to vacuum the polishing pad surface. The vacuum system is downstream from the conditioner, defined by a rotation of the platen.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Christopher Heung-Gyun LEE, Thomas Ho Fai LI, Tianyu YANG
  • Publication number: 20130189841
    Abstract: A method for forming an integrated circuit is provided. In one embodiment, the method includes forming a stop layer comprising carbon doped silicon nitride on a gate region on a substrate, the gate region having a poly gate and one or more spacers formed adjacent the poly gate, forming a dielectric layer on the stop layer, and removing a portion of the dielectric layer above the gate region using a CMP process, wherein the stop layer is a strain inducing layer having a CMP removal rate that is less than the CMP removal rate of the dielectric layer and equal to or less than the CMP removal rate of the one or more spacers.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Mihaela Balseanu, Li-Qun Xia, Derek R. Witty, Thomas H. Osterheld, Christopher Heung-Gyun Lee, William H. McClintock
  • Patent number: 8439723
    Abstract: A chemical mechanical apparatus comprises a polishing platen, a roller pad assembly capable of advancing a polishing pad across the platen, a substrate carrier to press a substrate against the polishing pad, and a heater to heat the substrate to a temperature sufficiently high to provide a rate of removal of material from the substrate that compensates for the wear of the polishing pad.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: May 14, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Robert A. Marks, Christopher Heung-Gyun Lee, Garlen C. Leung, Gregory E. Menk, Jie Diao, Erik S. Rondum
  • Patent number: 8211325
    Abstract: A method and apparatus for polishing or planarizing a pre-metal dielectric layer by a chemical mechanical polishing process are provided. The method comprises providing a semiconductor substrate having feature definitions formed thereon, forming a pre-metal dielectric layer over the substrate, wherein the as-deposited pre-metal dielectric layer has an uneven surface topography, and planarizing the uneven surface topography of the pre-metal dielectric layer using chemical mechanical polishing techniques, wherein planarizing the uneven surface topography comprises polishing the pre-metal dielectric layer with a fixed abrasive polishing pad and a first polishing composition to remove a bulk portion of the pre-metal dielectric layer and achieve a first predetermined planarity, and polishing the pre-metal dielectric layer with a non-abrasive polishing pad and high selectivity slurry to remove a residual portion of the pre-metal dielectric and achieve a second predetermined planarity.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: July 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jie Diao, Garlen C. Leung, Christopher Heung-Gyun Lee, Lakshmanan Karuppiah
  • Publication number: 20100285666
    Abstract: A method and apparatus for polishing or planarizing a pre-metal dielectric layer by a chemical mechanical polishing process are provided. The method comprises providing a semiconductor substrate having feature definitions formed thereon, forming a pre-metal dielectric layer over the substrate, wherein the as-deposited pre-metal dielectric layer has an uneven surface topography, and planarizing the uneven surface topography of the pre-metal dielectric layer using chemical mechanical polishing techniques, wherein planarizing the uneven surface topography comprises polishing the pre-metal dielectric layer with a fixed abrasive polishing pad and a first polishing composition to remove a bulk portion of the pre-metal dielectric layer and achieve a first predetermined planarity, and polishing the pre-metal dielectric layer with a non-abrasive polishing pad and high selectivity slurry to remove a residual portion of the pre-metal dielectric and achieve a second predetermined planarity.
    Type: Application
    Filed: April 9, 2010
    Publication date: November 11, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JIE DIAO, Garlen C. Leung, Christopher Heung-Gyun Lee, Lakshmanan Karuppiah
  • Publication number: 20100035515
    Abstract: A chemical mechanical apparatus comprises a polishing platen, a roller pad assembly capable of advancing a polishing pad across the platen, a substrate carrier to press a substrate against the polishing pad, and a heater to heat the substrate to a temperature sufficiently high to provide a rate of removal of material from the substrate that compensates for the wear of the polishing pad.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Inventors: Robert Marks, Christopher Heung-Gyun Lee, Garlen C. Leung, Gregory E. Menk, Jie Diao, Erik S. Rondum
  • Patent number: 7086933
    Abstract: A method and apparatus for delivering a polishing fluid to a chemical mechanical polishing surface is provided. In one embodiment, an apparatus for delivering a polishing fluid to a chemical mechanical polishing surface includes an arm having a plurality of holes formed in the arm for retaining a plurality of polishing fluid delivery tubes. Each of the tubes are disposed through one of the holes and coupled to the arm. The number of holes exceeds the number of tubes, thereby allowing the distribution of polishing fluid to a polishing surface and correspondingly the local polishing rates across a diameter of a substrate being polished to be controlled.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: August 8, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Lidia Vereen, Peter N. Skarpelos, Brian J. Downum, Patrick Williams, Terry Kin-Ting Ko, Christopher Heung-Gyun Lee, Kenneth Reese Reynolds, John Hearne, Daniel Hachnochi
  • Patent number: 7063597
    Abstract: Methods and compositions are provided for planarizing a substrate surface with reduced or minimal topographical defect formation during a polishing process for dielectric materials. In one aspect a method is provided for polishing a substrate containing two or more dielectric layers, such as silicon oxide, silicon nitride, silicon oxynitride, with at least one processing step using a fixed-abrasive polishing article as a polishing article. The processing steps may be used to remove all, substantially all, or a portion of the one or more dielectric layers, which may include removal of the topography, the bulk dielectric, or residual dielectric material of a dielectric layer in two or more steps.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 20, 2006
    Assignee: Applied Materials
    Inventors: Gopalakrishna B. Prabhu, Thomas H. Osterheld, Garlen C. Leung, Adam H. Zhong, Peter McReynolds, Yi-Yung Tao, Gregory E. Menk, Vasanth N. Mohan, Christopher Heung-Gyun Lee
  • Publication number: 20040142640
    Abstract: Methods and compositions are provided for planarizing a substrate surface with reduced or minimal topographical defect formation during a polishing process for dielectric materials. In one aspect a method is provided for polishing a substrate containing two or more dielectric layers, such as silicon oxide, silicon nitride, silicon oxynitride, with at least one processing step using a fixed-abrasive polishing article as a polishing article. The processing steps may be used to remove all, substantially all, or a portion of the one or more dielectric layers, which may include removal of the topography, the bulk dielectric, or residual dielectric material of a dielectric layer in two or more steps.
    Type: Application
    Filed: October 24, 2003
    Publication date: July 22, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Gopalakrishna B. Prabhu, Thomas H. Osterheld, Garlen C. Leung, Adam H. Zhong, Peter McReynolds, Yi-Yung Tao, Gregory E. Menk, Vasanth N. Mohan, Christopher Heung-Gyun Lee
  • Publication number: 20030199229
    Abstract: A method and apparatus for delivering a polishing fluid to a chemical mechanical polishing surface is provided. In one embodiment, an apparatus for delivering a polishing fluid to a chemical mechanical polishing surface includes an arm having a plurality of holes formed in the arm for retaining a plurality of polishing fluid delivery tubes. Each of the tubes are disposed through one of the holes and coupled to the arm. The number of holes exceeds the number of tubes, thereby allowing the distribution of polishing fluid to a polishing surface and correspondingly the local polishing rates across a diameter of a substrate being polished to be controlled.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 23, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Lidia Vereen, Peter N. Skarpelos, Brian J. Downum, Patrick Williams, Terry Kin-Ting Ko, Christopher Heung-Gyun Lee, Kenneth Reese Reynolds, John Hearne, Daniel Hachnochi