Patents by Inventor Christopher Hoeger

Christopher Hoeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190170440
    Abstract: Devices, systems, and methods for pressure-regulated melting are disclosed. A vessel includes a solids inlet, a fluids outlet, a cavity, and an energy source. Solids enter the vessel through the solids inlet. The cavity has an internal pressure. A backpressure is induced in the solids inlet. The energy source heats the vessel, the contents of the vessel, or a combination thereof. The rate of heating of the energy source is matched to a feed rate of the solids such that the solids are melted directly to a product liquid at the internal pressure. The product liquid passes through the fluids outlet through a restriction that maintains the internal pressure in the cavity.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Jacom Chamberlain, David Frankman, Nathan Davis
  • Publication number: 20190170441
    Abstract: Devices, systems, and methods for pressure-regulated melting are disclosed. A vessel includes a solids inlet, a fluids outlet, a cavity, and a warm fluids inlet. Solids enter the vessel through the solids inlet. The cavity has an internal pressure. Warm fluids enter the vessel through the warm fluids inlet. The warm liquid being directed into the vessel provides an inlet pressure that produces a backpressure in the solids inlet. A feed rate of the warm liquid is matched to a feed rate of the solids such that the solids are melted directly to a product liquid at the internal pressure. The product liquid is passed out of the vessel through a restriction that maintains the internal pressure in the cavity.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Jacom Chamberlain, David Frankman, Nathan Davis
  • Publication number: 20190170442
    Abstract: Devices, systems, and methods for pressure-regulated melting are disclosed. A vessel includes a solids inlet, a fluids outlet, a cavity, and a melting device. Solids enter the vessel through the solids inlet. The cavity has an internal pressure. The solids inlet has a reducer that produces a first back pressure on the solids in the solids inlet. The melting device heats the vessel, the contents of the vessel, or a combination thereof. The heating rate of the melting device is matched to the feed rate of the solids such that the solids are melted directly to a product liquid at the internal pressure. The product liquid passes through the fluids outlet through a restriction that maintains the internal pressure in the cavity.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 6, 2019
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Jacom Chamberlain, David Frankman, Nathan Davis
  • Publication number: 20190162475
    Abstract: Devices, systems, and methods for melting solids are disclosed. A vessel includes a solids inlet, a plunger, one or more fluid jets, and a fluid outlet. Solids are passed through the solids inlet into the vessel. The plunger is positioned adjacent to the solids inlet to provide a variable gap between the plunger and the solids inlet. The variable gap provides a restriction producing a back pressure at the solids inlet. Hot fluid is injected into the vessel by fluid jets. The one or more fluid jets enter the vessel and end adjacent to the variable gap. The hot fluid melts at least a portion of the solids.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Larry Baxter, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Aaron Sayre, David Frankman, Nathan Davis
  • Patent number: 10293297
    Abstract: A method for removal of a foulant from a carrier gas is disclosed. A solids conveyance device that spans a vessel is provided, comprising an enclosed section and a filtering section. A cryogenic liquid and the carrier gas are provided to the enclosed section. The foulant condenses, dissolves, or desublimates into the cryogenic liquid, forming a cryogenic slurry and a foulant-depleted carrier gas entrained in the cryogenic slurry. The solids conveyance device advances the cryogenic slurry into the filtering section. The foulant-depleted carrier gas leaves the vessel through an upper portion of the permeable exterior wall and a warmed cryogenic liquid is removed from the cryogenic slurry through a lower portion of the permeable exterior wall, resulting in a solid foulant that is passed out of the solids outlet. In this manner, the foulant is removed from the carrier gas.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 21, 2019
    Assignee: Sustainable Energy Solutions, LLC
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Eric Mansfield, Nathan Davis
  • Publication number: 20190128604
    Abstract: Devices, systems, and methods for removing a component from a fluid are disclosed. A feed fluid is heated by passing the feed fluid through a heating path of a first indirect-contact heat exchanger (ICHE). The feed fluid contains a first component. The fluid is heated from a first temperature to a second temperature, resulting in a heated feed fluid. The heated feed fluid is passed through a desiccator, containing a desiccant. The first component is bound up to the desiccant, resulting in a stripped-heated feed fluid. The stripped-heated feed fluid is cooled by passing the stripped-heated feed fluid through a cooling path of the first indirect-contact heat exchanger (ICHE). The stripped-heated feed fluid is cooled from a second temperature to a third temperature, the third temperature being greater than the first temperature, producing a product fluid.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Larry Baxter, Aaron Sayre, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Andrew Baxter, Nathan Davis
  • Publication number: 20190063832
    Abstract: A method for separating components from a fluid is disclosed. A cooling element is provided and is disposed in contact with a distal side of one or more thermally-conductive surfaces. One or more resistive heating elements are provided and are disposed in contact with or embedded in a proximal side of the one or more thermally-conductive surfaces. A fluid comprising one or more secondary components is provided. The fluid is passed across the one or more thermally conductive surfaces, the one or more secondary components freezing, crystallizing, desublimating, depositing, condensing, or combinations thereof, out of the fluid. The one or more resistive heating elements engage such that the one or more solid secondary components detach and pass out the solids outlet. The one or more resistive heating elements disengage, restarting production of the one or more solid secondary components.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Larry Baxter, Eric Mansfield, Christopher Hoeger, Kyler Stitt, Skyler Chamberlain, Nathan Davis
  • Patent number: 10197329
    Abstract: A method for separating a vapor from a carrier gas is disclosed. A hydrocyclone is provided with one or more nozzles on the wall of the hydrocyclone. A cryogenic liquid is provided to the tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the hydrocyclone. The carrier gas is injected into the hydrocyclone through the one or more nozzles. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted gas is drawn through the vortex finder while the vapor-enriched cryogenic liquid is drawn through the apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: February 5, 2019
    Assignee: Sustainable Energy Solutions LLC
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Jacom Chamberlain, Stephanie Burt, Andrew Baxter, Nathan Davis
  • Patent number: 10195615
    Abstract: A method for separating a vapor from a carrier gas is disclosed. An air-sparged hydrocyclone is provided with a porous sparger covered by an outer gas plenum. A cryogenic liquid is provided to the tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the cyclone. The carrier gas is injected into the air-sparged hydrocyclone through the porous sparger. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted gas is drawn through a vortex finder while the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 5, 2019
    Assignee: Sustainable Energy Solutions LLC
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Stephanie Burt, Eric Mansfield, Jacom Chamberlain, Andrew Baxter, Nathan Davis
  • Publication number: 20190009187
    Abstract: A method and device are disclosed for a distillation column. The distillation column comprises a first liquid portion below a first gas portion. The first liquid portion comprises an opening through a side wall comprising a gas backflow preventer. A horizontal reboiler is attached to the opening, the reboiler comprising a second gas portion above a second liquid portion. The recycle gas outlet and the recycle gas inlet are connected by a recycle gas pipe. A descending process liquid stream passes through a recycle gas stream in the first gas portion, forming a bottoms liquid stream, which pools and passes through the opening into the reboiler, and is separated in the reboiler into a product liquid stream, which passes out a liquid outlet, and the recycle gas stream, which is prevented from passing back through the opening by the gas backflow preventer, passing instead through a recycle gas outlet.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Inventors: Larry Baxter, Eric Mansfield, Skyler Chamberlain, Christopher Hoeger
  • Publication number: 20190003767
    Abstract: A device and process for removing vapors from a gas is disclosed. A tower is provided. Sub-cooled pellets are distributed by the solids distributor across a horizontal cross-section of the tower. A process gas, comprising a product vapor, passes through the gas inlet. The product vapor and the sub-cooled pellets comprise the same material. The product vapor and the sub-cooled pellets agglomerate as the product vapor desublimates onto the sub-cooled pellets, forming product pellets and a vapor-depleted gas. A crushing device, a screening device, and a solids heat exchanger are provided. A portion of the product pellets are recycled as sub-cooled pellets to the solids distributor by crushing and screening the portion of the product pellets to the size distribution of the sub-cooled pellets and cooling the portion of the product pellets to produce the sub-cooled pellets.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 3, 2019
    Inventors: Larry Baxter, Aaron Sayre, Christopher Hoeger, Stephanie Burt, David Frankman, Eric Mansfield, Nathan Davis
  • Publication number: 20180369744
    Abstract: A process and device for separating a vapor from a gas is disclosed. A direct-contact exchanger comprising a droplet-generating apparatus in a top portion of the exchanger and a bubbling apparatus in a bottom portion of the exchanger is provided. An inlet gas, comprising a vapor, is passed through the bubbling apparatus, forming bubbles in a bottoms liquid. The bottoms liquid strips a portion of the vapor and exchanges heat with the bubbles, producing a product liquid and a middle gas. A barren liquid is passed through the droplet-generating apparatus to form droplets of the barren liquid in the top portion. The droplets descend against the middle gas and strip a second portion of the vapor from and exchange heat with the middle gas, producing the bottoms liquid, which collects in the bottom portion, and a product gas.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 27, 2018
    Inventors: Larry Baxter, David Frankman, Aaron Sayre, Stephanie Burt, Christopher Hoeger, Eric Mansfield, Nathan Davis
  • Publication number: 20180328661
    Abstract: A method for removing a foulant from a heat exchanger is disclosed. A process fluid, comprising a process liquid and a fouling component, are provided to a process side of the heat exchanger. A flow of a coolant to the coolant side is provided by opening an inlet to the coolant side. The process fluid is cooled, a portion of the fouling component desublimating, crystallizing, freezing, condensing coupled with solidifying, or a combination thereof as a first portion of the foulant onto an outer surface of the coolant side. The inlet to the coolant side is periodically closed such that the flow of the coolant slows or stops, warming the process side, and causing the first portion of the foulant to sublimate, melt, absorb, or a combination thereof off the outer surface of the coolant side. The process then returns to the providing the flow of the coolant step.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Larry Baxter, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Aaron Sayre, Nathan Davis
  • Publication number: 20180320963
    Abstract: A process for separating a vapor from a gas is disclosed. A cryogenic liquid is provided to an inlet of a froth flotation device. A carrier gas is provided to a gas distributor of the froth flotation device. The carrier gas comprises a product vapor. Bubbles of the carrier gas are produced and passed through the cryogenic liquid in the froth flotation device. A portion of the product vapor desublimates, condenses, crystallizes, or a combination thereof to produce a solid product and a product-depleted carrier gas. Bubbles of the product-depleted carrier gas collect the solid product as a froth concentrate. The froth concentrate is removed by overflowing out of the froth flotation device.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 8, 2018
    Inventors: Larry Baxter, Stephanie Burt, Christopher Hoeger, David Frankman, Aaron Sayre, Eric Mansfield, Skyler Chamberlain, Kyler Stitt, Nathan Davis
  • Publication number: 20180306501
    Abstract: A process for separating a mixture of components is disclosed. A liquid mixture is provided to a separation vessel substantially near a temperature at which a product component freezes. The liquid mixture comprises the product component and a carrier component. The product component and the carrier component are essentially immiscible substantially near the temperature. The liquid mixture is separated into two or more phases, the two or more phases comprising a product component-rich liquid phase and a product component-depleted liquid phase. In this manner, a mixture of components is separated.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Kyler Stitt, Stephanie Burt, Christopher Hoeger, Eric Mansfield, Nathan Davis
  • Publication number: 20180306499
    Abstract: A method for removing a vapor from a carrier gas is disclosed. A heat exchanger is provided. A coolant is provided to the coolant side. A slurry is provided to the process side. The slurry comprises a contact liquid and scouring solids. The carrier gas is provided to the heat exchanger, the carrier gas comprising a vapor. A portion of the vapor desublimates, condenses, absorbs, or reacts such that the portion of the vapor solidifies to form a product solid. At least a portion of the product solid deposits as a foulant on an outer surface of the coolant side and is scoured with the scouring solids to remove the foulant from the outer surface of the coolant side. A vapor-depleted carrier gas is removed from the heat exchanger. The slurry and product solid from the heat exchanger. In this manner, the vapor is removed from the carrier gas.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Skyler Chamberlain, David Frankman, Aaron Sayre, Kyler Stitt, Eric Mansfield, Stephanie Burt, Nathan Davis
  • Publication number: 20180306495
    Abstract: A process for forming a solid product or products is disclosed. The process is provided with n desublimating exchangers. An exchanger E1 being associated with a first exchanger and an exchanger En being associated with an nth exchanger, n representing the number of exchangers. The n exchangers comprise at least one direct-contact exchanger comprising a contact fluid. A process fluid is passed through the n exchangers in order from E1 through En. The process fluid comprises a product component or components. The solid product or products form from the product component or components in the plurality of exchangers by desublimation. The solid product or products are separated from the process fluid. In this manner, a solid product or products is formed.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Larry Baxter, Christopher Hoeger, Stephanie Burt, Kyler Stitt, Eric Mansfield, Aaron Sayre, David Frankman, Andrew Baxter, Nathan Davis
  • Publication number: 20180299200
    Abstract: A process to prevent fouling using a desublimating heat exchanger is disclosed. An outlet stream from the desublimating heat exchanger may be split into a plurality of parallel streams. The parallel streams may be sent through a plurality of discrete unit operations, and the unit operations may change the temperature of at least one of the parallel streams. Parallel streams of differing temperature may emerge from the unit operations. The parallel streams which are of a similar temperature may be mixed to form a warm stream and a cool stream. The warm stream and the cool stream may be sent to a mixing chamber. A mixed stream of substantially uniform temperature may emerge from the mixing chamber, and the mixed stream may be recycled back to the desublimating heat exchanger. The mixing chamber may be separate from the desublimating heat exchanger, or the parallel streams of differing temperature may be mixed in the desublimating heat exchanger.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Christopher Hoeger
  • Publication number: 20180299176
    Abstract: A process to prevent fouling using a desublimating heat exchanger is disclosed. An outlet stream from the desublimating heat exchanger may be split into a plurality of parallel streams. The parallel streams may be sent through other devices for performing a unit operation, and the devices for performing a unit operation may change the temperature of at least one of the parallel streams. Parallel streams of differing temperature may emerge from the devices for performing a unit operation. The parallel streams of differing temperature may be sent to a mixing chamber. A mixed stream of uniform temperature may emerge from the mixing chamber, and the mixed stream may be recycled back to the desublimating heat exchanger. The mixing chamber may be separate from the desublimating heat exchanger, or the parallel streams of differing temperature may be mixed in the desublimating heat exchanger.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Christopher Hoeger
  • Publication number: 20180283781
    Abstract: A method for removal of a foulant from a carrier gas is disclosed. A solids conveyance device that spans a vessel is provided, comprising an enclosed section and a filtering section. A cryogenic liquid and the carrier gas are provided to the enclosed section. The foulant condenses, dissolves, or desublimates into the cryogenic liquid, forming a cryogenic slurry and a foulant-depleted carrier gas entrained in the cryogenic slurry. The solids conveyance device advances the cryogenic slurry into the filtering section. The foulant-depleted carrier gas leaves the vessel through an upper portion of the permeable exterior wall and a warmed cryogenic liquid is removed from the cryogenic slurry through a lower portion of the permeable exterior wall, resulting in a solid foulant that is passed out of the solids outlet. In this manner, the foulant is removed from the carrier gas.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Eric Mansfield, Nathan Davis