Patents by Inventor Christopher Ian Thomas

Christopher Ian Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7939986
    Abstract: High aspect ratio micromachined structures in semiconductors are used to improve power density in Betavoltaic cells by providing large surface areas in a small volume. A radioactive beta-emitting material may be placed within gaps between the structures to provide fuel for a cell. The pillars may be formed of SiC. In one embodiment, SiC pillars are formed of n-type SiC. P type dopant, such as boron is obtained by annealing a borosilicate glass boron source formed on the SiC. The glass is then removed. In further embodiments, a dopant may be implanted, coated by glass, and then annealed. The doping results in shallow planar junctions in SiC.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 10, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: MVS Chandrashekhar, Christopher Ian Thomas, Michael G. Spencer
  • Publication number: 20110079791
    Abstract: High aspect ratio micromachined structures in semiconductors are used to improve power density in Betavoltaic cells by providing large surface areas in a small volume. A radioactive beta-emitting material may be placed within gaps between the structures to provide fuel for a cell. The pillars may be formed of SiC. In one embodiment, SiC pillars are formed of n-type SiC. P type dopant, such as boron is obtained by annealing a borosilicate glass boron source formed on the SiC. The glass is then removed. In further embodiments, a dopant may be implanted, coated by glass, and then annealed. The doping results in shallow planar junctions in SiC.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 7, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: MVS Chandrashekhar, Christopher Ian Thomas, Michael G. Spencer
  • Patent number: 7663288
    Abstract: High aspect ratio micromachined structures in semiconductors are used to improve power density in Betavoltaic cells by providing large surface areas in a small volume. A radioactive beta-emitting material may be placed within gaps between the structures to provide fuel for a cell. The pillars may be formed of SiC. In one embodiment, SiC pillars are formed of n-type SiC. P type dopant, such as boron is obtained by annealing a borosilicate glass boron source formed on the SiC. The glass is then removed. In further embodiments, a dopant may be implanted, coated by glass, and then annealed. The doping results in shallow planar junctions in SiC.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: February 16, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: M V S Chandrashekhar, Christopher Ian Thomas, Michael G. Spencer
  • Publication number: 20080203399
    Abstract: Heteropolytype SiC heterojunctions display an abrupt change in polarization leading to 2 dimensional electron or hole gases at the lattice matched interface, depending on the direction of polarization. These channels carry a large amount of electric current which can be modulated with a gate electrode, giving rise to transistor operation in the lateral geometry without the need for n or p type doping. Furthermore, some of these structures display high turn-on voltages which may have applications in terahertz sources and exotic diodes in the transverse geometry.
    Type: Application
    Filed: September 18, 2007
    Publication date: August 28, 2008
    Inventors: Michael G. Spencer, Christopher Ian Thomas, MVS Chandrashekhar