Patents by Inventor Christopher J. Buchko

Christopher J. Buchko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100173065
    Abstract: The present invention is directed to a medical device having a polymerized base coat layer for the immobilization of an anti-thrombogenic material, such as heparin, thereon. The binding coat layer is comprised of various chemically functional groups which are stable and allow for the immobilization of the anti-thrombogenic material thereto. Methods for immobilizing the anti-thrombogenic material within the base coat layer posited on a surface of the medical device are also provided.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 8, 2010
    Applicant: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Eugene T. Michal, Ni Ding, Christopher J. Buchko
  • Patent number: 7736906
    Abstract: A method and device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodologies.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: June 15, 2010
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 7691330
    Abstract: A method and device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodolgies.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: April 6, 2010
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 7682669
    Abstract: The present invention is directed to a medical device having a polymerized base coat layer for the immobilization of an anti-thrombogenic material, such as heparin, thereon. The binding coat layer is comprised of various chemically functional groups which are stable and allow for the immobilization of the anti-thrombogenic material thereto. Methods for immobilizing the anti-thrombogenic material within the base coat layer posited on a surface of the medical device are also provided.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: March 23, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Ni Ding, Christopher J. Buchko
  • Patent number: 6943034
    Abstract: A method for producing arrays by spacing a dispenser a distance from a surface of a support, dispensing a volume containing a compound in a single coupling step of less than 5 nl to occupy a localized area of less than 1 cm2 of the surface of the support, allowing the compound to bind directly or indirectly to the support and repeating the steps to produce an array of at least 100 ligands at a density of 1000 per cm2 or greater.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: September 13, 2005
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 6864101
    Abstract: A method for producing polymer arrays by spacing a dispenser a distance from a surface of a support, dispensing a volume containing a monomer in a single coupling step of less than 5 nl to occupy a localized area of less than 1 cm2 of the surface of the support, allowing the monomer to bind directly or indirectly to the support and repeating the steps to produce an array of at least 100 polymer ligands at a density of 1000 per cm2 or greater.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: March 8, 2005
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 6849462
    Abstract: A method for producing arrays by depositing a resist on a substrate, selectively removing a portion of the resist to expose localized areas, dispensing a monomer to occupy a localized area of less than 1 cm2 of the surface of the support, allowing the monomer to bind directly or indirectly to the support and repeating the steps to produce an array of at least 10 different polymers is formed.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: February 1, 2005
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Publication number: 20040235033
    Abstract: An apparatus and method is provided for preparing and using a very large and diverse array of compounds on a substrate having rapidly accessible locations. The substrate contains cells in which the compounds of the array are located. Surrounding the cells is a non-wetable surface that prevents the solution in one cell from moving to adjacent cells. The compounds are delivered to the individual cells of the array by a micropipette attached to an X-Y translation stage.
    Type: Application
    Filed: May 14, 2004
    Publication date: November 25, 2004
    Applicant: Affymetrix, Inc.
    Inventors: Alejandro C. Zaffaroni, Christopher J. Buchko, Douglas N. Modlin
  • Publication number: 20040092032
    Abstract: A method and device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodolgies.
    Type: Application
    Filed: June 17, 2002
    Publication date: May 13, 2004
    Applicant: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P.A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 6656517
    Abstract: A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a therapeutic, diagnostic or hydrophilic top coat, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of a hydrophilic compound, a grafting component, and salt, wherein the polymerized grafting component contains uncrosslinked domains. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device coated with a polymeric primer or without a primer, or to a stent.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: December 2, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Christopher J. Buchko, Stephen J. Bigus
  • Patent number: 6544543
    Abstract: Brief periods of occlusion of blood flow in an otherwise open target vessel adjacent to vessels supplying blood to an ischemic region are caused by periodic administration of a therapeutically effective amount of a vasoconstrictor. It is anticipated these brief periods of occlusion will induce the enlargement of collateral vessels, causing increased blood flow to the ischemic region.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: April 8, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Evgenia Mandrusov, Christopher J. Buchko, Wouter E. Roorda
  • Patent number: 6541116
    Abstract: A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a top coat having a therapeutic, diagnostic or hydrophilic agent, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of an agent, a grafting component, and salt. In one embodiment, the therapeutic agent is superoxide dismutase or a superoxide dismutase mimic. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device such as a stent coated with a polymeric primer or without a primer.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: April 1, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Christopher J. Buchko, Deborah L. Kilpatrick, Stephen J. Bigus
  • Publication number: 20020187288
    Abstract: A medical device, and particularly an intracorporeal device for therapeutic or diagnostic use, comprising a silicone polyurethane. One embodiment of the invention is a medical device having a body formed of melt process extruded, porous silicone polyurethane material. In a method of the invention, the silicone polyurethane is combined with a porogen and then melt process extruded into a desired shape such as a tubular body. The porogen is then extracted from the extrudate, to form the extruded, melt processed, porous silicone polyurethane tubular body. The medical device, such as a stent cover, vascular graft, or catheter balloon, formed of the silicone polyurethane has excellent biostability, strength, and flexibility.
    Type: Application
    Filed: June 11, 2001
    Publication date: December 12, 2002
    Applicant: Advanced Cardiovascular Systems, Inc.
    Inventors: Florencia Lim, Christopher J. Buchko, Ashok A. Shah, Murthy V. Simhambhatla
  • Publication number: 20020151085
    Abstract: An apparatus and method is provided for preparing and using a very large and diverse array of compounds on a substrate having rapidly accessible locations. The substrate contains cells in which the compounds of the array are located. Surrounding the cells is a non-wetable surface that prevents the solution in one cell from moving to adjacent cells. The compounds are delivered to the individual cells of the array by a micropipette attached to an X-Y translation stage.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 17, 2002
    Inventors: Alejandro C. Zaffaroni, Christopher J. Buchko, Douglas N. Modlin
  • Publication number: 20020119578
    Abstract: An apparatus and method is provided for preparing and using a very large and diverse array of compounds on a substrate having rapidly accessible locations. The substrate contains cells in which the compounds of the array are located. Surrounding the cells is a non-wetable surface that prevents the solution in one cell from moving to adjacent cells. The compounds are delivered to the individual cells of the array by a micropipette attached to an X-Y translation stage.
    Type: Application
    Filed: April 3, 2002
    Publication date: August 29, 2002
    Inventors: Alejandro C. Zaffaroni, Christopher J. Buchko, Douglas N. Modlin
  • Publication number: 20020009535
    Abstract: A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a top coat having a therapeutic, diagnostic or hydrophilic agent, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of an agent, a grafting component, and salt. In one embodiment, the therapeutic agent is superoxide dismutase or a superoxide dismutase mimic. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device such as a stent coated with a polymeric primer or without a primer.
    Type: Application
    Filed: April 6, 2001
    Publication date: January 24, 2002
    Applicant: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Christopher J. Buchko, Deborah L. Kilpatrick, Stephen J. Bigus
  • Publication number: 20020002353
    Abstract: A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a therapeutic, diagnostic or hydrophilic top coat, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of a hydrophilic compound, a grafting component, and salt, wherein the polymerized grafting component contains uncrosslinked domains. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device coated with a polymeric primer or without a primer, or to a stent.
    Type: Application
    Filed: July 25, 2001
    Publication date: January 3, 2002
    Applicant: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Christopher J. Buchko, Stephen J. Bigus
  • Patent number: 6287285
    Abstract: A method of providing a therapeutic, diagnostic or lubricious hydrophilic coating on an intracorporeal medical device and the coated device produced thereby, wherein the coating is durable. In one embodiment, the coating comprises a polymerized base coat and a therapeutic, diagnostic or hydrophilic top coat, where the base coat has a binding component which binds to the top coat, and a grafting component which binds to the binding component and adheres to the device. In another embodiment, the coating comprises a blend of a hydrophilic compound, a grafting component, and salt, wherein the polymerized grafting component contains uncrosslinked domains. The coating of the invention may be applied to a medical device with a polymeric surface such as a polymeric catheter, or a metal device coated with a polymeric primer or without a primer, or to a stent.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: September 11, 2001
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Christopher J. Buchko, Stephen J. Bigus
  • Patent number: 6136269
    Abstract: A device for forming large arrays of polymers on a substrate (401). According to a preferred aspect of the invention, the substrate is contacted by a channel block (407) having channels (409) therein. Selected reagents are delivered through the channels, the substrate is rotated by a rotating stage (403), and the process is repeated to form arrays of polymers on the substrate. The method may be combined with light-directed methodolgies.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: October 24, 2000
    Assignee: Affymetrix, Inc.
    Inventors: James L. Winkler, Stephen P. A. Fodor, Christopher J. Buchko, Debra A. Ross, Lois Aldwin, Douglas N. Modlin
  • Patent number: 6121048
    Abstract: An apparatus and method is provided for preparing and using a very large and diverse array of compounds on a substrate having rapidly accessible locations. The substrate contains cells in which the compounds of the array are located. Surrounding the cells is a non-wetable surface that prevents the solution in one cell from moving to adjacent cells. The compounds are delivered to the individual cells of the array by a micropipette attached to an X-Y translation stage.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: September 19, 2000
    Inventors: Alejandro C. Zaffaroni, Christopher J. Buchko, Douglas N. Modlin