Patents by Inventor Christopher J. Butler

Christopher J. Butler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170269757
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 21, 2017
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20170192972
    Abstract: Embodiments include method, systems and computer program products for data-dependent clustering of geospatial words. In some embodiments, a matrix of words and locations may be obtained. A plurality of locality-sensitive hash (LSH) functions may be generated. A plurality of sparse row vectors may be generated. A plurality of sparse LSH functions may be generated based on the plurality of LSH functions. A clustering bucket may be determined from a plurality of clustering buckets for each of the plurality of sparse row vectors using the sparse LSH functions.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: CHRISTOPHER J. BUTLER, QIANG CHEN, BO HAN
  • Patent number: 9697245
    Abstract: Embodiments include method, systems and computer program products for data-dependent clustering of geospatial words. In some embodiments, a matrix of words and locations may be obtained. A plurality of locality-sensitive hash (LSH) functions may be generated. A plurality of sparse row vectors may be generated. A plurality of sparse LSH functions may be generated based on the plurality of LSH functions. A clustering bucket may be determined from a plurality of clustering buckets for each of the plurality of sparse row vectors using the sparse LSH functions.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christopher J. Butler, Qiang Chen, Bo Han
  • Patent number: 9690413
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: June 27, 2017
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Patent number: 9665200
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 30, 2017
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Patent number: 9569551
    Abstract: Dynamically modelling geospatial words in social media, in one aspect, generates a word set based on frequencies of words occurring in GPS annotated text data generated by a GPS-enabled device containing latitude and longitude coordinates. Locations are partitioned by mapping GPS coordinates in the GPS annotated text data to a set of discrete non-overlapped locations. A text stream contained in the GPS annotated text data is segmented into time windows. Footprints of locations in time windows are generated. Geospatial weights associated with words in the word set may be generated based on localness of words determined based on the footprints. Words in a text message are extracted and scores are determined for the set of discrete non-overlapped locations associated with the words.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: February 14, 2017
    Assignee: International Business Machines Corporation
    Inventors: Christopher J. Butler, Bo Han, Jennifer C. Lai
  • Patent number: 9563615
    Abstract: Dynamically modelling geospatial words in social media, in one aspect, generates a word set based on frequencies of words occurring in GPS annotated text data generated by a GPS-enabled device containing latitude and longitude coordinates. Locations are partitioned by mapping GPS coordinates in the GPS annotated text data to a set of discrete non-overlapped locations. A text stream contained in the GPS annotated text data is segmented into time windows. Footprints of locations in time windows are generated. Geospatial weights associated with words in the word set are generated based on localness of words determined based on the footprints. Words in a text message are extracted and scores are determined for the set of discrete non-overlapped locations associated with the words.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Christopher J. Butler, Bo Han, Jennifer C. Lai
  • Patent number: 9542028
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 10, 2017
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160378255
    Abstract: A method of calibrating a force sensor that includes an input surface and an array of sensing elements. The input has a number of test locations and is deformable under applied force. The force sensor is mounted in a predetermined test orientation. For each test location of the plurality of test locations on the input surface of the force sensor a predetermined test force to the test location. An element calibration value is measured for each sensing element of the array of sensing elements of the force sensor. An (x, y) deformation map of the input surface of the force sensor corresponding to the application of the predetermined test force to the test location is determined based on the measured element calibration values.
    Type: Application
    Filed: November 26, 2013
    Publication date: December 29, 2016
    Inventors: Christopher J. Butler, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Sinan Filiz
  • Publication number: 20160379412
    Abstract: An augmented reality display system used to diminish (for example, obscure, obfuscate, hide, make less distracting, block out, “white wash” and/or make less discernible) certain portions of a base image (for example, a user's view of a part of the real world as seen through eyeglasses). Some examples of visual subject matter that can be diminished include: (i) driver distraction phenomena; (ii) advertising; and/or (iii) subject matter the user is not authorized to view.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 29, 2016
    Inventors: Christopher J. Butler, Rahil Garnavi, Timothy M. Lynar
  • Publication number: 20160335276
    Abstract: Dynamically modelling geospatial words in social media, in one aspect, generates a word set based on frequencies of words occurring in GPS annotated text data generated by a GPS-enabled device containing latitude and longitude coordinates. Locations are partitioned by mapping GPS coordinates in the GPS annotated text data to a set of discrete non-overlapped locations. A text stream contained in the GPS annotated text data is segmented into time windows. Footprints of locations in time windows are generated. Geospatial weights associated with words in the word set may be generated based on localness of words determined based on the footprints. Words in a text message are extracted and scores are determined for the set of discrete non-overlapped locations associated with the words.
    Type: Application
    Filed: July 6, 2016
    Publication date: November 17, 2016
    Inventors: Christopher J. Butler, Bo Han, Jennifer C. Lai
  • Publication number: 20160335235
    Abstract: Dynamically modelling geospatial words in social media, in one aspect, generates a word set based on frequencies of words occurring in GPS annotated text data generated by a GPS-enabled device containing latitude and longitude coordinates. Locations are partitioned by mapping GPS coordinates in the GPS annotated text data to a set of discrete non-overlapped locations. A text stream contained in the GPS annotated text data is segmented into time windows. Footprints of locations in time windows are generated. Geospatial weights associated with words in the word set are generated based on localness of words determined based on the footprints. Words in a text message are extracted and scores are determined for the set of discrete non-overlapped locations associated with the words.
    Type: Application
    Filed: June 24, 2015
    Publication date: November 17, 2016
    Inventors: Christopher J. Butler, Bo Han, Jennifer C. Lai
  • Publication number: 20160306481
    Abstract: Systems for detecting an amount and/or location of a force applied to a device using a piezoelectric film are provided. One example system can include a transparent piezoelectric film for generating an electric charge in response to a deformation of the film. Electrodes positioned on opposite surfaces of the piezoelectric film can be used to detect the generated electric charge and determine an amount and/or location of force applied to the film based on the generated electric charge. In another embodiment, the system can include a capacitive touch sensor for determining a location of a touch event on the device.
    Type: Application
    Filed: October 28, 2014
    Publication date: October 20, 2016
    Applicant: APPLE INC.
    Inventors: Sinan Filiz, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner, Shahrooz Shahpamia, Sunggu Kang, Kai Wang
  • Patent number: 9405743
    Abstract: Dynamically modelling geospatial words in social media, in one aspect, generates a word set based on frequencies of words occurring in GPS annotated text data generated by a GPS-enabled device containing latitude and longitude coordinates. Locations are partitioned by mapping GPS coordinates in the GPS annotated text data to a set of discrete non-overlapped locations. A text stream contained in the GPS annotated text data is segmented into time windows. Footprints of locations in time windows are generated. Geospatial weights associated with words in the word set are generated based on localness of words determined based on the footprints. Words in a text message are extracted and scores are determined for the set of discrete non-overlapped locations associated with the words.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: August 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Christopher J. Butler, Bo Han, Jennifer C. Lai
  • Publication number: 20160216833
    Abstract: A system can include a display, a first device, and a second device all operatively connected to a controller. The first and second devices each use or share at least a portion of the display area. The controller is adapted to transmit during a pixel refresh time period of the display a first signal that is received by the first device. The first sync signal indicates a first time period in which a first operation can be performed in the first device. The controller is also adapted to transmit a second sync signal that is received by the second device indicating a second time period in which a second operation can be performed in the second device. The second time period can be during the pixel refresh time period or outside of the pixel refresh time period.
    Type: Application
    Filed: September 30, 2013
    Publication date: July 28, 2016
    Inventors: Christopher J. Butler, Peter W. Richards, Christian M. Sauer, Manu Agarwal
  • Publication number: 20160147352
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160147353
    Abstract: An optically transparent force sensor element is compensated for effects of environment by comparing a force reading from a first force-sensitive component with a second force-sensitive components. The first and second force-sensitive components disposed on opposite sides of a flexible substrate within a display stack.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160139716
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: June 1, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20160139717
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160103545
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner