Patents by Inventor Christopher J. Hardy

Christopher J. Hardy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080100294
    Abstract: An RF coil assembly includes a plurality of coil supports rotatably interconnected to each other. Each coil support is configured to rotate with respect to at least one adjoining coil support. A plurality of RF coils is connected to each coil support.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Kenneth W. Rohling, Christopher J. Hardy
  • Patent number: 7209777
    Abstract: A system and method is disclosed for tracking a moving object using magnetic resonance imaging. The technique includes acquiring a scout image scan having a number of image frames and extracting non-linear motion parameters from the number of image frames of the scout image scan. The technique includes prospectively shifting slice location using the non-linear motion parameters between slice locations while acquiring a series of MR images. The system and method are particularly useful in tracking coronary artery movement during the cardiac cycle to acquire the non-linear components of coronary artery movement during a diastolic portion of the R—R interval.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Manojkumar Saranathan, Christopher J. Hardy, Thomas K. F. Foo
  • Publication number: 20020095085
    Abstract: A system and method is disclosed for tracking a moving object using magnetic resonance imaging. The technique includes acquiring a scout image scan having a number of image frames and extracting non-linear motion parameters from the number of image frames of the scout image scan. The technique includes prospectively shifting slice location using the non-linear motion parameters between slice locations while acquiring a series of MR images. The system and method are particularly useful in tracking coronary artery movement during the cardiac cycle to acquire the non-linear components of coronary artery movement during a diastolic portion of the R-R interval.
    Type: Application
    Filed: November 30, 2000
    Publication date: July 18, 2002
    Inventors: Manojkumar Saranathan, Christopher J. Hardy, Thomas K.F. Foo
  • Patent number: 6275035
    Abstract: A method and apparatus for producing an imaging plane on an image of a structure of interest, such as an anatomical structure, positioned in an MRI system. An operator interactively pages through real-time, planar sections of the structure of interest. Using an input device, the operator selects three separate points in a planar section of the structure under study. Within approximately one second of selection of the third point, the method of the present invention determines the imaging plane containing the three selected points, determines the centroid of the imaging plane centered on a triangle defined by the three selected points, sends such imaging geometry and in-plane offsets of the imaging plane directly to the MRI system to generate a new imaging plane optimally positioned with respect to the selected points on the structure of interest and displaying such new imaging plane. The operator can also selectively maneuver the imaging plane on the image of the structure of interest.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: August 14, 2001
    Assignee: General Electric Company
    Inventors: Josef P. Debbins, Stephen J. Riederer, Christopher J. Hardy, Robert D. Darrow
  • Patent number: 5584293
    Abstract: Imaging parameters, such as the location, orientation and field of view of an imaging plane are selected. These parameters are provided to a pulse sequencer of a magnetic resonance (MR) scanner which modifies an MR pulse sequence to acquire an image at the selected imaging plane. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane to be acquired. The MR image is displayed on a display device. An interface device receives and reduces the MR image to an image icon and saves the image icon along with the corresponding imaging parameters. The image icons are displayed on the periphery of the screen around an MR image. An operator may then view and select one of the image icons, employing the pointing device. This causes the imaging parameters corresponding to the selected image icon to be sent to the pulse sequencer thereby causing an MR image to be acquired with these imaging parameters.
    Type: Grant
    Filed: August 16, 1995
    Date of Patent: December 17, 1996
    Assignee: General Electric Company
    Inventors: Robert D. Darrow, Christopher J. Hardy
  • Patent number: 5578924
    Abstract: A multi-planar imaging method employs magnetic resonance to detect image data from multiple planes within a subject. Data from each plane are detected in response to the same readout gradient and are simultaneously detected. The image planes can be arbitrarily oriented with respect to each other and with respect to the readout and phase-encoding image formation magnetic field gradient pulses if desired. Overlap of image data from each of the excited image planes in the acquired image is prevented by employing a thick refocusing slab oriented orthogonal to the readout and phase-encoding directions, or by choosing planes which intersect outside the subject's anatomy.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: November 26, 1996
    Assignee: General Electric Company
    Inventors: Charles L. Dumoulin, Christopher J. Hardy
  • Patent number: 5548216
    Abstract: A multi-planar imaging method employs magnetic resonance to detect image data from multiple planes within a subject. Data from each plane are detected in response to the same readout gradient and are simultaneously detected. The image planes can be arbitrarily oriented with respect to each other and with respect to the readout and phase-encoding image formation magnetic field gradient pulses if desired. Overlap of image data from each of the excited image planes in the acquired image is prevented by modulating the phase of each RF excitation pulse in concert with the amplitude of the phase-encoding gradient pulse to cause the image data from each excitation plane to be displaced by a unique amount in the phase-encoding direction.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: August 20, 1996
    Assignee: General Electric Company
    Inventors: Charles L. Dumoulin, Christopher J. Hardy
  • Patent number: 5514962
    Abstract: Three-dimensional (3D) image data is acquired from a subject with a medical imaging device and stored. The stored 3D image data is processed by a model workstation to segment the model into discrete structures and produce a segmented computer graphic model. An operator interacts with the model workstation to cause it to display desired structures of the the segmented model in a desired view and orientation. The operator also selects a position and orientation of a cutting plane passing through the segmented model. Once selected, the position and orientation information is provided to a pulse sequencer of a magnetic resonance (MR) imaging system. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane, corresponding to the cutting plane of the model workstation, to be acquired.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: May 7, 1996
    Assignee: General Electric Company
    Inventors: Harvey E. Cline, William E. Lorensen, Christopher J. Hardy
  • Patent number: 5512827
    Abstract: A newly acquired MR image of an imaging subject is displayed on a display device. An operator interactively manipulates the imaging plane during imaging, by using a button, a rocker switch, a knob, and a trackball. The button enables or disables interactive scan-plane control. The rocker switch chooses between "translate", and "rotate" modes. In "translate" mode, the knob pushes the imaging plane deeper or shallower relative to the most recently displayed image, while the trackball slides the plane sideways and/or up and down. In "rotate" mode, the knob spins the imaging plane about the center of the most recently displayed image without changing the tilt of the plane, while the trackball tumbles or tilts the imaging plane. Colored icons displayed over the image change location, size, and/or shape to indicate the direction and extent of the translation or rotation.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: April 30, 1996
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Robert D. Darrow
  • Patent number: 5512826
    Abstract: An MR image of a subject is displayed on a display device. Scan-control icons are displayed over this image. An operator interacts with an interface device to select imaging plane parameters during imaging. This is performed by selecting one of the icons with a pointing device, and dragging. Interface device then provides a display which indicates the motion of the imaging plane as well as the extent of the motion. Once selected, the location and orientation information transformed to global coordinates and is provided to a pulse sequencer of a magnetic resonance (MR) imaging system. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane to be acquired. This allows fast, accurate imaging plane selection, which may be selected by an operator who is searching for structures within the subject, or who is simultaneously performing a medical procedure on the subject.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: April 30, 1996
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Robert D. Darrow
  • Patent number: 5365927
    Abstract: A magnetic resonance (MR) imaging system for use in a medical procedure employs an open main magnet allowing access to a portion of a patient within an imaging volume, for producing a main magnetic field over the imaging volume; a set of open gradient coils which provide magnetic fields gradients over the imaging volume without restricting access to the imaging volume; a radiofrequency coil set for transmitting RF energy into the imaging volume to nutate nuclear spins within the imaging volume and receive an MR response signal from the nuclear spins; and a pointing device for indicating the position and orientation of a plane in which an image is to be acquired; an image control means for operating power supplies for the gradient coils and the RF coils to acquire an MR signal from the desired imaging plane; and a computation unit for constructing an image of the desired imaging plane.
    Type: Grant
    Filed: November 2, 1993
    Date of Patent: November 22, 1994
    Assignee: General Electric Company
    Inventors: Peter B. Roemer, Samuel M. Blumenfeld, Kirby G. Vosburgh, Harvey E. Cline, William D. Barber, William E. Lorensen, Richard L. St. Peters, John F. Schenck, Charles L. Dumoulin, Robert D. Darrow, Christopher J. Hardy
  • Patent number: 5327884
    Abstract: Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: July 12, 1994
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Harvey E. Cline
  • Patent number: 5323779
    Abstract: Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: June 28, 1994
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Harvey E. Cline
  • Patent number: 5313163
    Abstract: A method for suppressing sampling-ring artifacts produced by spiral-scan-based 2D selective excitation pulses, such as a those exciting a `pencil-shaped` region, employs a 2D annular saturation pulse followed by a gradient `crusher` lobe which dephases the transverse magnetization in the annular region. The annular saturation pulse is itself based on a spiral k-space trajectory having a limited number of cycles and a small outer radius, and is designed to saturate magnetization of tissue of the subject corresponding to the artifact rings of an excitation region while not affecting a central region. The annular saturation pulse may also be reshaped to limit the peak RF power to levels currently used for clinical MR imaging, while preserving bandwidth and the 2D excitation profile.
    Type: Grant
    Filed: August 12, 1992
    Date of Patent: May 17, 1994
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Edward J. Nieters
  • Patent number: 5307812
    Abstract: Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: May 3, 1994
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Harvey E. Cline
  • Patent number: 5258711
    Abstract: A method for reducing distortion in magnetic resonance (MR) images of a subject employs distortion compensating MR pulses in a conventional MR imaging sequence. The distortion compensating pulses are determined by first creating a conventional MR image of a slice of a subject having inherent distortions; constructing a target slice which is distorted in a manner opposite the direction of distortions in the slice image; taking a multi-dimensional Fourier transformation of the target slice to obtain a k-space region; choosing a continuous trajectory which efficiently traverses the k-space region; applying principles of multidimensional selective-excitation design to create simultaneous RF pulses and magnetic field gradient waveforms from the trajectory; and simultaneously applying the RF pulses and gradient waveforms in place of a traditional slice-select pulse in conventional MR imaging sequences to obtain images having reduced distortion as compared with conventional images.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: November 2, 1993
    Assignee: General Electric Company
    Inventor: Christopher J. Hardy
  • Patent number: 5201311
    Abstract: A method for providing information about the rate of a selected chemical reaction in each of at least one selected volume elements (voxels) in a sample includes the steps of: exciting a reaction-rate-dependent chemical-shift spectrum, by a selected stimulus (such as one of saturation-transfer and inversion-transfer RF signal pulses) to label the NMR signal of a first reaction constituent; spatially localizing the NMR response signal, provided by the excited resonance, to a selected voxel within the sample; and acquiring and processing the NMR response data from the localized voxel. The excitation, localization and data acquisition subsequences are repeated to generate data substantially proportional, or equal, to the reaction rate constants in the selected voxels, and in planes and/or volumes thereof.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: April 13, 1993
    Assignee: General Electric Company
    Inventors: Paul A. Bottomley, Christopher J. Hardy
  • Patent number: 5192909
    Abstract: An NMR system performs in vivo localized NMR spectroscopy. A two-dimensional selective RF excitation pulse is used to localize to a cylindrical region of interest, and either phase encoding or slice selective inversion is used to localize to a disk in the cylindrical region of interest. The two-dimensional selective RF excitation is performed in a series of pulse sequences rather than a single pulse sequence, and the resulting series of acquired NMR signals are summed together to substantially cancel signal conributions from outside the cylindrical region of interest.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: March 9, 1993
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Paul A. Bottomley, Harvey E. Cline
  • Patent number: 5133357
    Abstract: A method of imaging and quantitatively measuring blood velocity distribution within a selected vessel employs Nuclear Magnetic Resonance cylindrical excitation of the sample to be imaged, followed by Fourier velocity encoding excitation along a second axis for selectively encoding molecules based upon their flow velocities, then sensing the re-radiated signal data acquired in the presence of a readout gradient to provide resolution along the cylindrical axis, and reconstructing a velocity profile. Spatial localization is accomplished with an excitation pulse having a cylindrical rather than slab geometry. This method can be combined with cardiac synchronization to measure flow dynamics or it can be applied without synchronization to measure steady flow. The geometry of the measurement is flexible in that the directions of flow sensitivity and geometric resolution are independent.
    Type: Grant
    Filed: February 7, 1991
    Date of Patent: July 28, 1992
    Assignee: General Electric Company
    Inventors: Charles L. Dumoulin, Christopher J. Hardy, Steven P. Suza, Stephen A. Ash
  • Patent number: 5027071
    Abstract: A method of reducing slice profile degradation due to gradient signal amplitude ripple, has steps of: sensing the gradient signal ripple amplitude; normalizing the sensed ripple signal amplitude responsive to the gradient amplitude commanded; and modulating the RF signal amplitude with the adjusted-amplitude ripple signal, to cause the RF and gradient magnetic fields to have an effective vector pointing substantially in the same direction, during the slice-selection interval, as would the effective field vector formed with a gradient field devoid of ripple. Apparatus for reducing the slice profile degradation modulates the RF signal with the ripple envelope obtained from the output of the gradient signal amplifier, by a signal controlled by the gradient amplifier input.
    Type: Grant
    Filed: March 5, 1990
    Date of Patent: June 25, 1991
    Assignee: General Electric Company
    Inventors: Christopher J. Hardy, Peter B. Roemer, Otward M. Mueller