Patents by Inventor Christopher J. Hasser

Christopher J. Hasser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11019329
    Abstract: In one embodiment, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 25, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 10984567
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 20, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10953234
    Abstract: Wearable devices are provided herein including wearable defibrillators, wearable devices for diagnosing symptoms associated with sleep apnea, and wearable devices for diagnosing symptoms associated with heart failure. The wearable external defibrillators can include a plurality of ECG sensing electrodes and a first defibrillator electrode pad and a second defibrillator electrode pad. The ECG sensing electrodes and the defibrillator electrode pads are configured for long term wear. Methods are also provided for using the wearable external defibrillators to analyze cardiac signals of the wearer and to provide an electrical shock if a treatable arrhythmia is detected. Methods are also disclosed for refurbishing wearable defibrillators. Methods of using wearable devices for diagnosing symptoms associated with sleep apnea and for diagnosing symptoms associated with heart failure are also provided.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: March 23, 2021
    Assignee: ELEMENT SCIENCE, INC.
    Inventors: Uday N. Kumar, Timothy Bahney, Maarten Dinger, Pedram Afshar, Jay Dhuldhoya, Riley Marangi, Kevin M. Farino, Christopher J. Hasser, Zachary J. Malchano, Frank Garcia
  • Publication number: 20200368915
    Abstract: A system comprises a first robotic arm adapted to support and move a tool and a second robotic arm adapted to support and move a camera. The system also comprises an input device, a display, and a processor. The processor is configured to, in a first mode, command the first robotic arm to move the camera in response to a first input received from the input device to capture an image of the tool and present the image as a displayed image on the display. The processor is configured to, in a second mode, display a synthetic image of the first robotic arm in a boundary area around the captured image on the display, and in response to a second input, change a size of the boundary area relative a size of the displayed image.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 26, 2020
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10806524
    Abstract: In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: October 20, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian E. McDowall, Christopher J. Hasser
  • Publication number: 20200268474
    Abstract: An exemplary method includes receiving images of a site captured at a same time by a camera, generating, based one or more of the images, a monochromatic image, generating, based on one or more of the images, an alternate image representative of an alternate imaging characteristic of the site, and displaying the displaying the monochromatic image combined with the alternate image, the alternate image being highlighted relative to the monochromatic image.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Inventors: Ian E. McDowall, Christopher J. Hasser
  • Patent number: 10737394
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 11, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20200240861
    Abstract: In one embodiment, a force sensor apparatus is provided including a tube portion having a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs, a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system, and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 30, 2020
    Inventors: Stephen J. Blumenkranz, Christopher J. Hasser
  • Patent number: 10682198
    Abstract: A surgical site is simultaneously illuminated by less than all the visible color components that make up visible white light, and a fluorescence excitation illumination component by an illuminator in a minimally invasive surgical system. An image capture system acquires an image for each of the visible color components illuminating the surgical site and a fluorescence image, which is excited by the fluorescence excitation component from the illuminator. The minimally invasive surgical system uses the acquired images to generate a background black and white image of the surgical site. The acquired fluorescence image is superimposed on the background black and white image, and is highlighted in a selected color, e.g., green. The background black and white image with the superimposed highlighted fluorescence image is displayed for a user of the system. The highlighted fluorescence image identifies tissue of clinical interest.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: June 16, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ian E. McDowall, Christopher J. Hasser
  • Publication number: 20200163732
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 28, 2020
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 10646293
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 12, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 10620066
    Abstract: In one embodiment, a force sensor apparatus is provided including a tube portion having a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs, a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system, and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 14, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Stephen J. Blumenkranz, Christopher J. Hasser
  • Publication number: 20200107700
    Abstract: The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 9, 2020
    Inventors: Christopher J. Hasser, Nitish Swarup, Thomas G. Cooper, S. Christopher Anderson
  • Patent number: 10603127
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: March 31, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Publication number: 20200007856
    Abstract: In one embodiment, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 2, 2020
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 10506920
    Abstract: The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: December 17, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Nitish Swarup, Thomas G. Cooper, S. Christopher Anderson
  • Patent number: 10432921
    Abstract: In one embodiment, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 1, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Publication number: 20190213770
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 11, 2019
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10282881
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: May 7, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20190047154
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao