Patents by Inventor Christopher J. Hughes

Christopher J. Hughes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12056489
    Abstract: Systems, methods, and apparatuses relating to 8-bit floating-point matrix dot product instructions are described.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: August 6, 2024
    Assignee: Intel Corporation
    Inventors: Naveen Mellempudi, Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Christopher J. Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20240241722
    Abstract: Systems, methods, and apparatuses relating to 8-bit floating-point matrix dot product instructions are described.
    Type: Application
    Filed: March 28, 2024
    Publication date: July 18, 2024
    Applicant: Intel Corporation
    Inventors: Naveen MELLEMPUDI, Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Christopher J. HUGHES, Evangelos GEORGANAS, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Patent number: 12020028
    Abstract: Systems, methods, and apparatuses relating to 8-bit floating-point matrix dot product instructions are described.
    Type: Grant
    Filed: December 26, 2020
    Date of Patent: June 25, 2024
    Assignee: Intel Corporation
    Inventors: Naveen Mellempudi, Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Christopher J. Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Patent number: 11989555
    Abstract: Disclosed embodiments relate to atomic memory operations. In one example, a method of executing an instruction atomically and with weak order includes: fetching, by fetch circuitry, the instruction from code storage, the instruction including an opcode, a source identifier, and a destination identifier, decoding, by decode circuitry, the fetched instruction, selecting, by a scheduling circuit, an execution circuit among multiple circuits in a system, scheduling, by the scheduling circuit, execution of the decoded instruction out of order with respect to other instructions, with an order selected to optimize at least one of latency, throughput, power, and performance, and executing the decoded instruction, by the execution circuit, to: atomically read a datum from a location identified by the destination identifier, perform an operation on the datum as specified by the opcode, the operation to use a source operand identified by the source identifier, and write a result back to the location.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: May 21, 2024
    Assignee: Intel Corporation
    Inventors: Doddaballapur N. Jayasimha, Jonas Svennebring, Samantika S. Sury, Christopher J. Hughes, Jong Soo Park, Lingxiang Xiang
  • Publication number: 20240152448
    Abstract: An embodiment of an integrated circuit may comprise circuitry communicatively coupled to two or more sub-non-uniform memory access clusters (SNCs) to allocate a specified memory space in the two or more SNCs in accordance with a SNC memory allocation policy indicated from a request to initialize the specified memory space. An embodiment of an apparatus may comprise decode circuitry to decode a single instruction, the single instruction to include a field for an opcode, and execution circuitry to execute the decoded instruction according to the opcode to provide an indicated SNC memory allocation policy (e.g., a SNC policy hint). Other embodiments are disclosed and claimed.
    Type: Application
    Filed: June 21, 2021
    Publication date: May 9, 2024
    Applicant: Intel Corporation
    Inventors: Zhe Wang, Lingxiang Xiang, Christopher J. Hughes
  • Patent number: 11972230
    Abstract: Embodiments for a matrix transpose and multiply operation are disclosed. In an embodiment, a processor includes a decoder and execution circuitry. The decoder is to decode an instruction having a format including an opcode field to specify an opcode, a first destination operand field to specify a destination matrix location, a first source operand field to specify a first source matrix location, and a second source operand field to specify a second source matrix location. The execution circuitry is to, in response to the decoded instruction, transpose the first source matrix to generate a transposed first source matrix, perform a matrix multiplication using the transposed first source matrix and the second source matrix to generate a result, and store the result in a destination matrix location.
    Type: Grant
    Filed: June 27, 2020
    Date of Patent: April 30, 2024
    Assignee: Intel Corporation
    Inventors: Menachem Adelman, Robert Valentine, Barukh Ziv, Amit Gradstein, Simon Rubanovich, Zeev Sperber, Mark J. Charney, Christopher J. Hughes, Alexander F. Heinecke, Evangelos Georganas, Binh Pham
  • Publication number: 20240126555
    Abstract: A method of an aspect includes receiving a request for a chained accelerator operation, and configuring a chain of accelerators to perform the chained accelerator operation. This may include configuring a first accelerator to access an input data from a source memory location in system memory, process the input data, and generate first intermediate data. This may also include configuring a second accelerator to receive the first intermediate data, without the first intermediate data having been sent to the system memory, process the first intermediate data, and generate additional data. Other apparatus, methods, systems, and machine-readable medium are disclosed.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventors: Saurabh GAYEN, Christopher J. HUGHES, Utkarsh Y. KAKAIYA, Alexander F. HEINECKE
  • Publication number: 20240126613
    Abstract: A chip or other apparatus of an aspect includes a first accelerator and a second accelerator. The first accelerator has support for a chained accelerator operation. The first accelerator is to be controlled as part of the chained accelerator operation to access an input data from a source memory location in system memory, process the input data, and generate first intermediate data. The second accelerator also has support for the chained accelerator operation. The second accelerator is to be controlled as part of the chained accelerator operation to receive the first intermediate data, without the first intermediate data having been sent to the system memory, process the first intermediate data, and generate additional data. Other apparatus, methods, systems, and machine-readable medium are disclosed.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventors: Saurabh GAYEN, Christopher J. HUGHES, Utkarsh Y. KAKAIYA, Alexander F. HEINECKE
  • Publication number: 20240126551
    Abstract: Disclosed embodiments relate to systems for performing instructions to quickly convert and use matrices (tiles) as one-dimensional vectors. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode, locations of a two-dimensional (2D) matrix and a one-dimensional (1D) vector, and a group of elements comprising one of a row, part of a row, multiple rows, a column, part of a column, multiple columns, and a rectangular sub-tile of the specified 2D matrix, and wherein the opcode is to indicate a move of the specified group between the 2D matrix and the 1D vector, decode circuitry to decode the fetched instruction; and execution circuitry, responsive to the decoded instruction, when the opcode specifies a move from 1D, to move contents of the specified 1D vector to the specified group of elements.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Inventors: Bret TOLL, Christopher J. HUGHES, Dan BAUM, Elmoustapha OULD-AHMED-VALL, Raanan SADE, Robert VALENTINE, Mark J. CHARNEY, Alexander F. HEINECKE
  • Publication number: 20240127392
    Abstract: A chip or other apparatus of an aspect includes a first accelerator and a second accelerator. The first accelerator has support for a chained accelerator operation. The first accelerator is to be controlled as part of the chained accelerator operation to access an input data from a source memory location in system memory, process the input data, generate first intermediate data, and store the first intermediate data to a storage. The second accelerator also has support for the chained accelerator operation. The second accelerator is to be controlled as part of the chained accelerator operation to receive the first intermediate data from the storage, without the first intermediate data having been sent to the system memory, process the first intermediate data, and generate additional data. Other apparatus, methods, systems, and machine-readable medium are disclosed.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventors: Christopher J. HUGHES, Saurabh GAYEN, Utkarsh Y. KAKAIYA, Alexander F. HEINECKE
  • Patent number: 11954489
    Abstract: Disclosed embodiments relate to systems for performing instructions to quickly convert and use matrices (tiles) as one-dimensional vectors. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode, locations of a two-dimensional (2D) matrix and a one-dimensional (1D) vector, and a group of elements comprising one of a row, part of a row, multiple rows, a column, part of a column, multiple columns, and a rectangular sub-tile of the specified 2D matrix, and wherein the opcode is to indicate a move of the specified group between the 2D matrix and the 1D vector, decode circuitry to decode the fetched instruction; and execution circuitry, responsive to the decoded instruction, when the opcode specifies a move from 1D, to move contents of the specified 1D vector to the specified group of elements.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Bret Toll, Christopher J. Hughes, Dan Baum, Elmoustapha Ould-Ahmed-Vall, Raanan Sade, Robert Valentine, Mark J. Charney, Alexander F. Heinecke
  • Patent number: 11954490
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to transform matrices into a row-interleaved format. In one example, a processor includes fetch and decode circuitry to fetch and decode an instruction having fields to specify an opcode and locations of source and destination matrices, wherein the opcode indicates that the processor is to transform the specified source matrix into the specified destination matrix having the row-interleaved format; and execution circuitry to respond to the decoded instruction by transforming the specified source matrix into the specified RowInt-formatted destination matrix by interleaving J elements of each J-element sub-column of the specified source matrix in either row-major or column-major order into a K-wide submatrix of the specified destination matrix, the K-wide submatrix having K columns and enough rows to hold the J elements.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Raanan Sade, Robert Valentine, Bret Toll, Christopher J. Hughes, Alexander F. Heinecke, Elmoustapha Ould-Ahmed-Vall, Mark J. Charney
  • Publication number: 20240103867
    Abstract: Disclosed embodiments relate to systems for performing instructions to quickly convert and use matrices (tiles) as one-dimensional vectors. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode, locations of a two-dimensional (2D) matrix and a one-dimensional (1D) vector, and a group of elements comprising one of a row, part of a row, multiple rows, a column, part of a column, multiple columns, and a rectangular sub-tile of the specified 2D matrix, and wherein the opcode is to indicate a move of the specified group between the 2D matrix and the 1D vector, decode circuitry to decode the fetched instruction; and execution circuitry, responsive to the decoded instruction, when the opcode specifies a move from 1D, to move contents of the specified 1D vector to the specified group of elements.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Bret TOLL, Christopher J. HUGHES, Dan BAUM, Elmoustapha OULD-AHMED-VALL, Raanan SADE, Robert VALENTINE, Mark J. CHARNEY, Alexander F. HEINECKE
  • Patent number: 11941395
    Abstract: Systems, methods, and apparatuses relating to 16-bit floating-point matrix dot product instructions are described.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Menachem Adelman, Christopher J. Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Patent number: 11941394
    Abstract: A processor includes a decode unit to decode an instruction indicating a source packed data operand having source data elements and indicating a destination storage location. Each of the source data elements has a source data element value and a source data element position. An execution unit, in response to the instruction, stores a result packed data operand having result data elements each having a result data element value and a result data element position. Each result data element value is one of: (1) equal to a source data element position of a source data element, closest to one end of the source operand, having a source data element value equal to the result data element position of the result data element; and (2) a replacement value, when no source data element has a source data element value equal to the result data element position of the result data element.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Christopher J. Hughes, Jong Soo Park
  • Patent number: 11934830
    Abstract: Disclosed embodiments relate to a new instruction for performing data-ready memory access operations.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 19, 2024
    Assignee: Intel Corporation
    Inventors: William M. Brown, Mikhail Plotnikov, Christopher J. Hughes
  • Publication number: 20240078285
    Abstract: Disclosed embodiments relate to accelerating multiplication of sparse matrices. In one example, a processor is to fetch and decode an instruction having fields to specify locations of first, second, and third matrices, and an opcode indicating the processor is to multiply and accumulate matching non-zero (NZ) elements of the first and second matrices with corresponding elements of the third matrix, and executing the decoded instruction as per the opcode to generate NZ bitmasks for the first and second matrices, broadcast up to two NZ elements at a time from each row of the first matrix and each column of the second matrix to a processing engine (PE) grid, each PE to multiply and accumulate matching NZ elements of the first and second matrices with corresponding elements of the third matrix. Each PE further to store an NZ element for use in a subsequent multiplications.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: Dan BAUM, Chen KOREN, Elmoustapha OULD-AHMED-VALL, Michael ESPIG, Christopher J. HUGHES, Raanan SADE, Robert VALENTINE, Mark J. CHARNEY, Alexander F. HEINECKE
  • Publication number: 20240045690
    Abstract: Disclosed embodiments relate to matrix compress/decompress instructions. In one example, a processor includes fetch circuitry to fetch a compress instruction having a format with fields to specify an opcode and locations of decompressed source and compressed destination matrices, decode circuitry to decode the fetched compress instructions, and execution circuitry, responsive to the decoded compress instruction, to: generate a compressed result according to a compress algorithm by compressing the specified decompressed source matrix by either packing non-zero-valued elements together and storing the matrix position of each non-zero-valued element in a header, or using fewer bits to represent one or more elements and using the header to identify matrix elements being represented by fewer bits; and store the compressed result to the specified compressed destination matrix.
    Type: Application
    Filed: September 1, 2023
    Publication date: February 8, 2024
    Inventors: Dan BAUM, Michael ESPIG, James GUILFORD, Wajdi K. FEGHALI, Raanan SADE, Christopher J. HUGHES, Robert VALENTINE, Bret TOLL, Elmoustapha OULD-AHMED-VALL, Mark J. CHARNEY, Vinodh GOPAL, Ronen ZOHAR, Alexander F. HEINECKE
  • Patent number: 11892952
    Abstract: A processor of an aspect includes a plurality of packed data registers, and a decode unit to decode a no-locality hint vector memory access instruction. The no-locality hint vector memory access instruction to indicate a packed data register of the plurality of packed data registers that is to have a source packed memory indices. The source packed memory indices to have a plurality of memory indices. The no-locality hint vector memory access instruction is to provide a no-locality hint to the processor for data elements that are to be accessed with the memory indices. The processor also includes an execution unit coupled with the decode unit and the plurality of packed data registers. The execution unit, in response to the no-locality hint vector memory access instruction, is to access the data elements at memory locations that are based on the memory indices.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventor: Christopher J. Hughes
  • Patent number: 11886875
    Abstract: Disclosed embodiments relate to systems and methods for performing nibble-sized operations on matrix elements. In one example, a processor includes fetch circuitry to fetch an instruction, decode circuitry to decode the fetched instruction the fetched instruction having fields to specify an opcode and locations of first source, second source, and destination matrices, the opcode to indicate the processor is to, for each pair of corresponding elements of the first and second source matrices, logically partition each element into nibble-sized partitions, perform an operation indicated by the instruction on each partition, and store execution results to a corresponding nibble-sized partition of a corresponding element of the destination matrix. The exemplary processor includes execution circuitry to execute the decoded instruction as per the opcode.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Jonathan D. Pearce, Dan Baum, Guei-Yuan Lueh, Michael Espig, Christopher J. Hughes, Raanan Sade, Robert Valentine, Mark J. Charney, Alexander F. Heinecke