Patents by Inventor Christopher J. Kulach

Christopher J. Kulach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220022766
    Abstract: An electronic fitness device comprises a first optical transmitter, an optical receiver, and a processing element. The first optical transmitter is configured to transmit a first optical signal and a second optical signal. The optical receiver is configured to receive the first and optical signals and to generate first and second photoplethysmogram (PPG) signals resulting from the received optical signals. The processing element is configured to control the first optical transmitter to transmit the first optical signal the second optical signal, receive the first and second PPG signals from the optical receiver and compare them, identify a common cardiac component present in the first and the second PPG signals based on the comparison, determine a signal filter parameter based on the common cardiac component, and generate first and second cardiac components from the first and second PPG signals, respectively, based on the signal filter parameter.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 27, 2022
    Inventors: Christopher J. Kulach, Paul R. MacDonald
  • Patent number: 11179051
    Abstract: An electronic fitness device comprises a first optical transmitter, an optical receiver, and a processing element. The first optical transmitter is configured to transmit a first optical signal and a second optical signal. The optical receiver is configured to receive the first and optical signals and to generate first and second photoplethysmogram (PPG) signals resulting from the received optical signals. The processing element is configured to control the first optical transmitter to transmit the first optical signal the second optical signal, receive the first and second PPG signals from the optical receiver and compare them, identify a common cardiac component present in the first and the second PPG signals based on the comparison, determine a signal filter parameter based on the common cardiac component, and generate first and second cardiac components from the first and second PPG signals, respectively, based on the signal filter parameter.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 23, 2021
    Inventors: Christopher J. Kulach, Paul R. MacDonald
  • Patent number: 10912469
    Abstract: An electronic fitness device comprises a first optical transmitter array, a first optical receiver, a second optical receiver, and a processing element. The first optical transmitter array includes first optical transmitter operable to transmit a first optical signal having a first wavelength and a second optical transmitter operable to transmit a second optical signal having a second wavelength. The first optical receiver is operable to receive modulated optical signals and generate a first photoplethysmogram (PPG) signal resulting from the first optical signal and a second PPG signal resulting from the second optical signal. The second optical receiver is operable to receive modulated optical signals and generate a third PPG signal resulting from the first optical signal and a fourth PPG signal resulting from the second optical signal. The processing element is operable to determine cardiac information of the user based on the received PPG signals.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 9, 2021
    Inventors: Paul R. MacDonald, Christopher J. Kulach, James K. Rooney
  • Patent number: 10401243
    Abstract: A system for measuring power generated by a skier is disclosed. The power generated by the skier may be calculated based upon each complete revolution of a ski pole or ski movement. To do so, the system may include various sensors that measure a force exerted on a ski pole or ski, the angle of the ski pole or ski, and the velocity of the skier at various time instants within each ski pole or ski revolution. A processing unit may calculate power generated by the skier in the skier's direction of travel using the force exerted in the skier's direction of travel during a complete revolution of ski pole (or ski) movement and the velocity of the skier.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: September 3, 2019
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, Timothy Vandermeiden, Mason V. N. Hender
  • Patent number: 10172533
    Abstract: A swimming heart rate monitor comprises a strap, a first electrode, a second electrode, a first electrical connector, an electronics module, a second electrical connector, and a water sealing feature. The strap covers a portion of a user's chest. The first and second electrodes are positioned on an inner surface of the strap to contact the user's skin. The electrodes provide an electronic heart signal corresponding to the heartbeat of the user. The first electrical connector is positioned on an outer surface of the strap and is in electronic communication with the first and second electrodes. The electronics module may attach to the strap and process the heart signal. The second electrical connector is accessed on the electronics module and may electrically connect to the first electrical connector. The water sealing feature prevents water from interfering with the connection of the first electrical connector and the second electrical connector.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: January 8, 2019
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, Timothy Vandermeiden, James K. Rooney, Rogelio A. Rivas, Phillip J. C. Spanswick
  • Publication number: 20180317786
    Abstract: An electronic fitness device comprises a first optical transmitter, an optical receiver, and a processing element. The first optical transmitter is configured to transmit a first optical signal and a second optical signal. The optical receiver is configured to receive the first and optical signals and to generate first and second photoplethysmogram (PPG) signals resulting from the received optical signals. The processing element is configured to control the first optical transmitter to transmit the first optical signal the second optical signal, receive the first and second PPG signals from the optical receiver and compare them, identify a common cardiac component present in the first and the second PPG signals based on the comparison, determine a signal filter parameter based on the common cardiac component, and generate first and second cardiac components from the first and second PPG signals, respectively, based on the signal filter parameter.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Christopher J. Kulach, Paul R. MacDonald
  • Publication number: 20180317785
    Abstract: An electronic fitness device comprises a first optical transmitter array, a first optical receiver, a second optical receiver, and a processing element. The first optical transmitter array includes first optical transmitter operable to transmit a first optical signal having a first wavelength and a second optical transmitter operable to transmit a second optical signal having a second wavelength. The first optical receiver is operable to receive modulated optical signals and generate a first photoplethysmogram (PPG) signal resulting from the first optical signal and a second PPG signal resulting from the second optical signal. The second optical receiver is operable to receive modulated optical signals and generate a third PPG signal resulting from the first optical signal and a fourth PPG signal resulting from the second optical signal. The processing element is operable to determine cardiac information of the user based on the received PPG signals.
    Type: Application
    Filed: January 3, 2018
    Publication date: November 8, 2018
    Inventors: Paul R. MacDonald, Christopher J. Kulach, James K. Rooney
  • Publication number: 20180317852
    Abstract: An electronic fitness device comprises first and second optical transmitters, an optical receiver, and a processing element. The first optical transmitter is configured to transmit a first optical signal having a first wavelength. The second optical transmitter is configured to transmit a first optical signal having a second wavelength. The optical receiver is configured to receive the first and second optical signals and to generate first and second photoplethysmogram (PPG) signals respectively resulting from the received optical signals. The processing element is configured to control the first and second optical transmitters to transmit the first and second optical signals, receive the first and second PPG signals, and utilize the second PPG signal to reduce a noise component from the first PPG signal.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Paul R. MacDonald, Christopher J. Kulach
  • Patent number: 9801587
    Abstract: A system, method, and device for monitoring a cardiac signal of a user includes an emitter (LED) for transmitting light toward skin of the user, a receiver (photodiode) for receiving a reflection of the transmitted light and generating a light intensity signal, and a processor configured to generate a photoplethysmogram (PPG) signal based on the light intensity signal. The PPG signal includes a cardiac component, a motion component and a respiratory component. An inertial sensor provides a motion signal to the processor based on sensed movement of the device and one or more time-variant filters are configured by the processor to filter the PPG signal to isolate the cardiac component of the PPG signal based on determined filter coefficients.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: October 31, 2017
    Assignee: Garmin Switzerland GmbH
    Inventors: Paul R. MacDonald, Christopher J. Kulach
  • Patent number: 9717424
    Abstract: Characterization of a fitness monitor based on its operation enables a processor to account for variations in device operating modes and biometric characteristics of the user. The fitness monitor includes an emitter (e.g., LED) for transmitting light toward skin of the user, a receiver (e.g., photodiode) for receiving a reflection of the transmitted light, a photometric front end for generating a photoplethysmogram (PPG) signal based on the received reflection, and a processor configured to select an intensity level for the emitter based on a comparison of a determined component of the PPG signal and a reference value. The reference value, which may characterize the fitness monitor based on a determined variability or range of the PPG signal, may be utilized by the processor to improve or maintain the signal quality of the PPG signal to enable determination of a cardiac component and/or reduction of power consumption by the fitness device.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: August 1, 2017
    Assignee: Garmin Switzerland GmbH
    Inventor: Christopher J. Kulach
  • Publication number: 20170211997
    Abstract: A system for measuring power generated by a skier is disclosed. The power generated by the skier may be calculated based upon each complete revolution of a ski pole or ski movement. To do so, the system may include various sensors that measure a force exerted on a ski pole or ski, the angle of the ski pole or ski, and the velocity of the skier at various time instants within each ski pole or ski revolution. A processing unit may calculate power generated by the skier in the skier's direction of travel using the force exerted in the skier's direction of travel during a complete revolution of ski pole (or ski) movement and the velocity of the skier.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 27, 2017
    Inventors: Christopher J. Kulach, Timothy Vandermeiden, Mason V.N. Hender
  • Publication number: 20170105638
    Abstract: Characterization of a fitness monitor based on its operation enables a processor to account for variations in device operating modes and biometric characteristics of the user. The fitness monitor includes an emitter (e.g., LED) for transmitting light toward skin of the user, a receiver (e.g., photodiode) for receiving a reflection of the transmitted light, a photometric front end for generating a photoplethysmogram (PPG) signal based on the received reflection, and a processor configured to select an intensity level for the emitter based on a comparison of a determined component of the PPG signal and a reference value. The reference value, which may characterize the fitness monitor based on a determined variability or range of the PPG signal, may be utilized by the processor to improve or maintain the signal quality of the PPG signal to enable determination of a cardiac component and/or reduction of power consumption by the fitness device.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 20, 2017
    Inventor: Christopher J. Kulach
  • Publication number: 20170105682
    Abstract: A system, method, and device for monitoring a cardiac signal of a user includes an emitter (LED) for transmitting light toward skin of the user, a receiver (photodiode) for receiving a reflection of the transmitted light and generating a light intensity signal, and a processor configured to generate a photoplethysmogram (PPG) signal based on the light intensity signal. The PPG signal includes a cardiac component, a motion component and a respiratory component. An inertial sensor provides a motion signal to the processor based on sensed movement of the device and one or more time-variant filters are configured by the processor to filter the PPG signal to isolate the cardiac component of the PPG signal based on determined filter coefficients.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 20, 2017
    Inventors: Paul R. MacDonald, Christopher J. Kulach
  • Publication number: 20140336493
    Abstract: A swimming heart rate monitor comprises a strap, a first electrode, a second electrode, a first electrical connector, an electronics module, a second electrical connector, and a water sealing feature. The strap covers a portion of a user's chest. The first and second electrodes are positioned on an inner surface of the strap to contact the user's skin. The electrodes provide an electronic heart signal corresponding to the heartbeat of the user. The first electrical connector is positioned on an outer surface of the strap and is in electronic communication with the first and second electrodes. The electronics module may attach to the strap and process the heart signal. The second electrical connector is accessed on the electronics module and may electrically connect to the first electrical connector. The water sealing feature prevents water from interfering with the connection of the first electrical connector and the second electrical connector.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, Timothy Vandermeiden, James K. Rooney, Rogelio A. Rivas, Phillip J.C. Spanswick
  • Publication number: 20130178728
    Abstract: A heart rate monitor (HRM) includes an electrostatic discharge protective layer configured to at least partially shield the heart rate monitor from electrostatic discharge (ESD). The heart rate monitor includes a strap configured to be worn on the body of a user that includes signal and ground electrodes. The signal electrode is configured to receive electrical impulses from the heart of the user, while the ground electrode is configured to electrically ground the heart rate monitor to the body of the user. An electrostatic discharge protective layer is disposed on or in the strap over the signal electrode so that the signal electrode is at least substantially positioned between the body of the user and the electrostatic discharge protective layer when the strap is worn. The electrostatic discharge protective layer is electrically coupled to the ground electrode to at least partially shield the signal electrode from electrostatic discharge.
    Type: Application
    Filed: June 18, 2012
    Publication date: July 11, 2013
    Applicant: GARMIN SWITZERLAND GMBH
    Inventors: Timothy Vandermeiden, Christopher J. Kulach, Theodorus J. Smit, Rogelio A. Rivas, Darcy L. Davis
  • Publication number: 20130151193
    Abstract: A method and apparatus for determining motion explosiveness is described herein. In some configurations, a system is provided that includes a display, an inertial sensor operable to generate signals corresponding to user motion; and a processing system in communication with the inertial sensor and the display. The processing system is operable to calculate a histogram representing the sensed user motion, the histogram providing an indication of motion explosiveness, and communicate with the display to present the indication of motion explosiveness on the display.
    Type: Application
    Filed: June 18, 2012
    Publication date: June 13, 2013
    Applicant: GARMIN SWITZERLAND GMBH
    Inventors: Christopher J. Kulach, Eugene So, Paul R. MacDonald, James K. Rooney
  • Patent number: 8330236
    Abstract: A system for improving the performance of a microelectromechanical systems (MEMS) device that is housed in a package and implemented on a printed circuit board (PCB) comprises a footprint, an isolation channel, and a bridge. A portion of the isolation channel is removed to mechanically isolate the MEMS device.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: December 11, 2012
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, Paul R. MacDonald
  • Patent number: 8060337
    Abstract: A system for estimating motion parameters corresponding to a user. The system may generally include a receiver operable to receive a signal from an external source, an inertial sensor operable to be coupled with the user and arbitrarily oriented relative to the direction of user motion for generation of a signal corresponding to user motion, and a processing system in communication with the receiver and inertial sensor.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 15, 2011
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, Ross G. Stirling, James K. Rooney, Paul R. MacDonald
  • Patent number: 8055469
    Abstract: A motion sensing apparatus generally comprising a housing unit operable to be attached to an object at an attachment position, an accelerometer operable to provide a signal corresponding to an acceleration measurement; and a processing system. The processing system is operable to acquire the signal corresponding to the acceleration measurement and analyze the acquired acceleration measurement to identify the attachment position of the housing unit.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 8, 2011
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, James K. Rooney, Paul R. MacDonald, Ross G. Stirling
  • Patent number: 8036850
    Abstract: A method and apparatus for estimating a motion parameter corresponding to a subject element employs one or more accelerometers operable to measure accelerations and a processing system operable to generate a motion parameter metric utilizing the acceleration measurements and estimate the motion parameter using the motion parameter metric.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: October 11, 2011
    Assignee: Garmin Switzerland GmbH
    Inventors: Christopher J. Kulach, James K. Rooney, Paul R. MacDonald