Patents by Inventor Christopher J. Leavitt
Christopher J. Leavitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210375590Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.Type: ApplicationFiled: August 13, 2021Publication date: December 2, 2021Applicant: APPLIED Materials, Inc.Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
-
Patent number: 11120973Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.Type: GrantFiled: May 10, 2019Date of Patent: September 14, 2021Assignee: Applied Materials, Inc.Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
-
Publication number: 20200357611Abstract: An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.Type: ApplicationFiled: May 10, 2019Publication date: November 12, 2020Applicant: APPLIED Materials, Inc.Inventors: Vikram M. Bhosle, Christopher J. Leavitt, Guillermo Colom, Timothy J. Miller
-
Patent number: 10290466Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.Type: GrantFiled: November 10, 2017Date of Patent: May 14, 2019Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
-
Publication number: 20180087148Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.Type: ApplicationFiled: November 10, 2017Publication date: March 29, 2018Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
-
Publication number: 20180068830Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.Type: ApplicationFiled: November 10, 2017Publication date: March 8, 2018Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
-
Patent number: 9865430Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.Type: GrantFiled: November 23, 2015Date of Patent: January 9, 2018Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
-
Patent number: 9840772Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.Type: GrantFiled: May 11, 2017Date of Patent: December 12, 2017Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
-
Publication number: 20170247791Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.Type: ApplicationFiled: May 11, 2017Publication date: August 31, 2017Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
-
Patent number: 9711316Abstract: A system and method of improving the performance and extending the lifetime of an ion source is disclosed. The ion source includes an ion source chamber, a suppression electrode and a ground electrode. In the processing mode, the ion source chamber may be biased to a first positive voltage, while the suppression electrode is biased to a negative voltage to attract positive ions from within the chamber through an aperture and toward the workpiece. In the cleaning mode, the ion beam is defocused so that it strikes the suppression electrode and the ground electrode. The voltages applied to the ion source chamber and the electrodes are pulsed to minimize the possibility of glitches during this cleaning mode.Type: GrantFiled: October 10, 2013Date of Patent: July 18, 2017Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Christopher J. Leavitt, Peter F. Kurunczi
-
Patent number: 9677171Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.Type: GrantFiled: June 6, 2014Date of Patent: June 13, 2017Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
-
Publication number: 20160163510Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.Type: ApplicationFiled: November 23, 2015Publication date: June 9, 2016Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
-
Publication number: 20150354056Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.Type: ApplicationFiled: June 6, 2014Publication date: December 10, 2015Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
-
Patent number: 9034743Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.Type: GrantFiled: November 26, 2013Date of Patent: May 19, 2015Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas P T Bateman
-
Publication number: 20150101634Abstract: A system and method of improving the performance and extending the lifetime of an ion source is disclosed. The ion source includes an ion source chamber, a suppression electrode and a ground electrode. In the processing mode, the ion source chamber may be biased to a first positive voltage, while the suppression electrode is biased to a negative voltage to attract positive ions from within the chamber through an aperture and toward the workpiece. In the cleaning mode, the ion beam is defocused so that it strikes the suppression electrode and the ground electrode. The voltages applied to the ion source chamber and the electrodes are pulsed to minimize the possibility of glitches during this cleaning mode.Type: ApplicationFiled: October 10, 2013Publication date: April 16, 2015Inventors: Christopher J. Leavitt, Peter F. Kurunczi
-
Publication number: 20150024580Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.Type: ApplicationFiled: November 26, 2013Publication date: January 22, 2015Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas PT Bateman
-
Patent number: 8907307Abstract: A method of implanting a workpiece in an ion implantation system. The method may include providing an extraction plate adjacent to a plasma chamber containing a plasma, such that the extraction plate extracts ions from the plasma through at least one aperture that provides an ion beam having ions distributed over a range of an angles of incidence on the workpiece. The method may include scanning the workpiece with respect to the extraction plate and varying a power level of the plasma during the scanning from a first power level to a second power level, wherein at a surface of the workpiece, a first beam width at a first power level is greater than a second beam width at a second power level.Type: GrantFiled: March 11, 2011Date of Patent: December 9, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Christopher J. Leavitt, Ludovic Godet, Timothy J. Miller
-
Patent number: 8698109Abstract: A computer readable storage medium containing program instructions for treating a photoresist relief feature on a substrate having an initial line roughness and an initial critical dimension, that, when executed cause a system to: direct ions toward the photoresist relief feature in a first exposure at a first angular range and at a first ion dose rate configured to reduce the initial line roughness to a second line roughness; and direct ions toward the photoresist relief feature in a second exposure at a second ion dose rate greater than the first ion dose rate, the second ion dose rate being configured to swell the photoresist relief feature.Type: GrantFiled: January 14, 2013Date of Patent: April 15, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Ludovic Godet, Christopher J. Leavitt, Joseph C. Olson, Patrick M. Martin
-
Patent number: 8698107Abstract: A time-of-flight (TOF) ion sensor system for monitoring an angular distribution of ion species having an ion energy and incident on a substrate includes a drift tube wherein the ion sensor system is configured to vary an angle of the drift tube with respect to a plane of the substrate. The drift tube may have a first end configured to receive a pulse of ions from the ion species wherein heavier ions and lighter ions of the pulse of ions arrive in packets at a second end of the drift tube. An ion detector may be disposed at the second end of the ion sensor, wherein the ion detector is configured to detect the packets of ions derived from the pulse of ions and corresponding to respective different ion masses.Type: GrantFiled: January 10, 2011Date of Patent: April 15, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Ludovic Godet, Christopher J. Leavitt, Bon-Woong Koo, Anthony Renau
-
Patent number: 8669538Abstract: A system for improving ion beam quality is disclosed. According to one embodiment, the system comprises an ion source, having a chamber defined by a plurality of chamber walls; an RF antenna disposed on a first wall of the plurality of chamber walls; a second wall, opposite the first wall, the distance between the first wall and the second wall defining the height of the chamber; an aperture disposed on one of the plurality of chamber walls; a first gas inlet for introducing a first source gas to the chamber; and a second gas inlet for introducing a second source gas, different from the first source gas, to the chamber; wherein a first distance from the first gas inlet to the second wall is less than 35% of the height; and a second distance from the second gas inlet to the first wall is less than 35% of the height.Type: GrantFiled: March 12, 2013Date of Patent: March 11, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Bon-Woong Koo, Christopher J. Leavitt, Peter F. Kurunczi, Timothy J. Miller, Svetlana B. Radovanov