Patents by Inventor Christopher J. Plott

Christopher J. Plott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11541157
    Abstract: Membrane oxygenators useful in a variety of medical situations, including various short-term procedures and relatively longer-term life support, and components of membrane-based oxygenators, such as conditioning modules for exchanging oxygen for carbon dioxide during extracorporeal conditioning of blood, are described. A conditioning module includes a plurality of mats of hollow fibers and a potting material disposed throughout the peripheral edges of the mats to create a circumferential seal that defines a passageway through the plurality of fiber mats having a substantially circular cross-sectional shape. The circumferential seal defines an effective fiber length for each of the hollow fibers. A resisting member is disposed across the proximal ends of at least some of the hollow fibers and is adapted to resist fluid flow into each of the hollow fibers based on the effective fiber length of the particular hollow fiber.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: January 3, 2023
    Assignee: Michigan Critical Care Consultants, Inc.
    Inventors: Christopher J. Plott, Raymond DiTullio, Robert L. Beane, III
  • Publication number: 20210030940
    Abstract: Membrane oxygenators useful in a variety of medical situations, including various short-term procedures and relatively longer-term life support, and components of membrane-based oxygenators, such as conditioning modules for exchanging oxygen for carbon dioxide during extracorporeal conditioning of blood, are described. A conditioning module includes a plurality of mats of hollow fibers and a potting material disposed throughout the peripheral edges of the mats to create a circumferential seal that defines a passageway through the plurality of fiber mats having a substantially circular cross-sectional shape. The circumferential seal defines an effective fiber length for each of the hollow fibers. A resisting member is disposed across the proximal ends of at least some of the hollow fibers and is adapted to resist fluid flow into each of the hollow fibers based on the effective fiber length of the particular hollow fiber.
    Type: Application
    Filed: June 17, 2020
    Publication date: February 4, 2021
    Applicant: Michigan Critical Care Consultants, Inc.
    Inventors: Christopher J. Plott, Raymond DiTullio, Robert L. Beane, III
  • Patent number: 10898633
    Abstract: The disclosure relates to devices and methods for extracorporeal conditioning of blood. Extracorporeal blood oxygenators and blood oxygenator components, such as conditioning modules, are described. An extracorporeal blood oxygenator includes a conditioning module having an external frame, an inlet cover, an outlet cover, and an internal chamber. A fiber assembly is disposed within the internal chamber and a potting material on the fiber assembly creates a circumferential seal that defines a passageway through the fiber assembly having a substantially circular cross-sectional shape. A fluid inlet is in fluid communication with the passageway, has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly, and has an internal curvilinear surface adjacent the fiber assembly. A fluid outlet on the opposite side of the fiber assembly also has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: January 26, 2021
    Assignee: Michigan Critical Care Consultants, Inc.
    Inventors: Christopher J Plott, Robert L Beane, III
  • Publication number: 20200360591
    Abstract: The disclosure relates to devices and methods for extracorporeal conditioning of blood. Extracorporeal blood oxygenators and blood oxygenator components, such as conditioning modules, are described. An extracorporeal blood oxygenator includes a conditioning module having an external frame, an inlet cover, an outlet cover, and an internal chamber. A fiber assembly is disposed within the internal chamber and a potting material on the fiber assembly creates a circumferential seal that defines a passageway through the fiber assembly having a substantially circular cross-sectional shape. A fluid inlet is in fluid communication with the passageway, has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly, and has an internal curvilinear surface adjacent the fiber assembly. A fluid outlet on the opposite side of the fiber assembly also has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: Michigan Critical Care Consultants, Inc.
    Inventors: Christopher J Plott, Robert L. Beane, III
  • Publication number: 20180078695
    Abstract: The disclosure relates to devices and methods for extracorporeal conditioning of blood. Extracorporeal blood oxygenators and blood oxygenator components, such as conditioning modules, are described. An extracorporeal blood oxygenator includes a conditioning module having an external frame, an inlet cover, an outlet cover, and an internal chamber. A fiber assembly is disposed within the internal chamber and a potting material on the fiber assembly creates a circumferential seal that defines a passageway through the fiber assembly having a substantially circular cross-sectional shape. A fluid inlet is in fluid communication with the passageway, has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly, and has an internal curvilinear surface adjacent the fiber assembly. A fluid outlet on the opposite side of the fiber assembly also has a lumen that extends along an axis that is substantially perpendicular to the fiber assembly.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 22, 2018
    Inventors: Christopher J Plott, Robert L Beane, III
  • Patent number: 8926635
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 8663245
    Abstract: The invention provides a system for occluding a left atrial appendage of a patient. The system can include a ring occluder that can be positioned around the left atrial appendage and a ring applicator to position the ring occluder with respect to the left atrial appendage. The system can also provide a tissue-grasping tool that is separable from the ring applicator tool.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 8545754
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Patent number: 8025620
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 27, 2011
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100305398
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 2, 2010
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100274170
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20100272607
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the apparatus having an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus, the apparatus comprising: a core in communication with the inlet such that blood from a patient can be supplied to the core, the core comprising a first element and a second element that interfit to define openings, wherein the elements and the openings together enhance flow of blood from the patient radially outward from the core; a heat exchanger that is arranged about the core and through which blood from the core can move radially outward; and an oxygenator that is arranged about the heat exchanger and through which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20100269342
    Abstract: Described is a method of making an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the steps comprising: providing a core through which blood can be supplied to the apparatus from a patient; providing a heat exchanger about the core such that blood from the core can move radially outward through the heat exchanger; providing an oxygenator about the heat exchanger such that blood from the heat exchanger can move radially outward through the oxygenator; and placing the core, heat exchanger and oxygenator in a housing that includes an inlet in communication with the core and an outlet that is located radially outward from the inlet in order to define a flowpath for blood through the apparatus.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li
  • Publication number: 20100272606
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit comprising: an inlet mandrel that is configured such that the blood moves radially outward from the inlet mandrel through the openings in a radial direction; a heat exchanger arranged around the inlet mandrel, wherein blood can move radially outward with the transfer of heat to or from the blood; an oxygenator arranged around the heat exchanger, wherein blood can move from the heat exchanger radially outward with the transfer of oxygen into the blood; and a housing that houses the inlet mandrel, the heat exchanger and the oxygenator, and that comprises a blood inlet in communication with the inlet mandrel in order to allow blood to enter the apparatus from the patient, and a blood outlet in communication with the oxygenator in order for blood to exit the apparatus, wherein the blood outlet is located in the housing radially outward from the inlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Partick J. Cloutier, Anil Thapa, Ming Li, Kevin McInotosh
  • Patent number: 7794387
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: September 14, 2010
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100145361
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Application
    Filed: October 2, 2009
    Publication date: June 10, 2010
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: D779882
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: February 28, 2017
    Assignee: FLIPSI, LTD.
    Inventors: Jeffrey S. Plott, Christopher J. Plott
  • Patent number: D811814
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: March 6, 2018
    Assignee: FLIPSI, LTD.
    Inventors: Jeffrey S. Plott, Christopher J. Plott
  • Patent number: D857455
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 27, 2019
    Assignee: FLIPSI, LTD.
    Inventors: Jeffrey S. Plott, Christopher J. Plott
  • Patent number: D890574
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: July 21, 2020
    Assignee: FLIPSI, LTD.
    Inventors: Jeffrey S. Plott, Christopher J. Plott