Patents by Inventor Christopher J. Pluta

Christopher J. Pluta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10605332
    Abstract: A planetary gear assembly (30) and method of assembly in an electric camshaft phaser (20) with a split ring gear including a drive-side ring gear portion (32) rotatable by an engine crankshaft and an output-side ring gear portion (34) that can be connected to a camshaft (22). A plurality of rotatable planetary gears (36a, 36b, 36c) can be interposed between the split ring gear and the sun gear (28). The output-side ring gear portion (34) can have a different number of teeth than the drive-side ring gear portion (32) by a value corresponding to a multiple of the number of planetary gears (36a, 36b, 36c). A compliant planetary gear carrier (40, 140) can support the plurality of planetary gears (36a, 36b, 36c) allowing variance of a normally equidistant distance between separate spaced rotational axes of at least two of the planetary gears (36a, 36b, 36c) to selectively compensate for mechanical tolerances of the drive-side ring gear portion (32) and the output-side ring gear portion (34) of the split ring gear.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 31, 2020
    Assignee: BORGWARNER, INC.
    Inventors: Christopher J. Pluta, Michael Marsh
  • Patent number: 10557385
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 11, 2020
    Assignee: BorgWarner Inc.
    Inventors: Larry A. Pritchard, Thomas R. Benner, Christopher J. Pluta
  • Patent number: 10408096
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 10, 2019
    Assignee: BorgWarner Inc.
    Inventors: Christopher J. Pluta, Michael W. Marsh
  • Patent number: 10240525
    Abstract: A variable compression connecting rod system (10) located in an internal combustion engine (12) and a method of assembly can include a connecting rod (28) mountable to a piston pin (26) having a first longitudinal axis at one end and 5 mountable to a crankpin (22) having a second longitudinal axis at a second end portion (36). A hydraulically actuated eccentric rotor (52) rotatable about one of the first and second longitudinal axis. The eccentric rotor (52) including first and second vanes (54a, 54b) for driving the rotor between first and second angular positions in response to fluid pressure acting on the first and second vanes. The eccentric rotor 10 (52) having an eccentric surface area with different radial distances (80, 82) movable into alignment with a longitudinal axis of the connecting rod (28) for varying a longitudinal length of the connecting rod (28) between the first and second longitudinal axis.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: March 26, 2019
    Assignee: BorgWarner Inc.
    Inventors: David B. Roth, Christopher J. Pluta, Paul A. Darsky, Daniel Brown
  • Publication number: 20190010837
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.
    Type: Application
    Filed: November 6, 2017
    Publication date: January 10, 2019
    Inventors: Larry A. PRITCHARD, Thomas R. BENNER, Christopher J. PLUTA
  • Publication number: 20180320564
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Application
    Filed: November 6, 2017
    Publication date: November 8, 2018
    Inventors: Christopher J. PLUTA, Michael W. MARSH
  • Patent number: 10107154
    Abstract: A cam phaser (30, 130, 230) dynamically adjusts a rotational relationship of a camshaft (32) of an internal combustion engine with respect to an engine crankshaft operably connected with a phaser sprocket (42, 142, 242). The cam phaser (30, 130, 230) can include a planetary gear assembly having a ring gear (34, 134, 234) driven by the phaser sprocket (42, 142, 242), a planetary gear carrier (36, 136, 236) connected to the camshaft (32), a sun gear (38, 138, 238), and at least one rotatable planetary gear (40, 140, 240).
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: October 23, 2018
    Assignee: BorgWarner, Inc.
    Inventors: Christopher J. Pluta, Michael Marsh, Michael Grieb
  • Publication number: 20180073598
    Abstract: A planetary gear assembly (30) and method of assembly in an electric camshaft phaser (20) with a split ring gear including a drive-side ring gear portion (32) rotatable by an engine crankshaft and an output-side ring gear portion (34) that can be connected to a camshaft (22). A plurality of rotatable planetary gears (36a, 36b, 36c) can be interposed between the split ring gear and the sun gear (28). The output-side ring gear portion (34) can have a different number of teeth than the drive-side ring gear portion (32) by a value corresponding to a multiple of the number of planetary gears (36a, 36b, 36c). A compliant planetary gear carrier (40, 140) can support the plurality of planetary gears (36a, 36b, 36c) allowing variance of a normally equidistant distance between separate spaced rotational axes of at least two of the planetary gears (36a, 36b, 36c) to selectively compensate for mechanical tolerances of the drive-side ring gear portion (32) and the output-side ring gear portion (34) of the split ring gear.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Inventors: Christopher J. PLUTA, Michael MARSH
  • Patent number: 9845738
    Abstract: The variable compression ratio piston system for an engine adjusts the compression ratio of the engine piston by way of hydraulic fluid distributed between a pair of chambers formed in a pair of bores receiving control pistons mechanically coupled to the engine piston. A control valve selectively permits flow of hydraulic fluid between the high compression ratio line and the low compression ratio line. A variable force solenoid controlled by an engine control unit preferably controls the position of the control valve. The position of the spool controls whether hydraulic fluid can flow toward the first chamber, toward the second chamber, or not at all. Flow of hydraulic fluid is actuated by alternating forces from inertial and combustion forces on a crankshaft from operation of the engine.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 19, 2017
    Assignee: BorgWarner Inc.
    Inventor: Christopher J. Pluta
  • Patent number: 9810109
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: November 7, 2017
    Assignee: BorgWarner Inc.
    Inventors: Christopher J. Pluta, Michael W. Marsh
  • Patent number: 9810108
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: November 7, 2017
    Assignee: BorgWarner Inc.
    Inventors: Larry A. Pritchard, Thomas R. Benner, Christopher J. Pluta
  • Publication number: 20170254235
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12), three ring gears (26, 28, 30), multiple planet gears (24), and a sun gear (22). The sprocket (12) receives rotational drive input from an engine crankshaft. One or more of the three ring gear(s) (26, 28, 30) receives rotational drive input from the sprocket (12) and rotates with the sprocket (12), and the remaining ring gear(s) (26, 28, 30) transmit rotational drive output to an engine camshaft (62). All three of the ring gears (26, 28, 30) engage with the planet gears (24). And the sun gear (22) also engages with the planet gears (24). In operation, relative rotational speeds between the sprocket (12) and the sun gear (22) causes the engine camshaft (62) to advance or retard engine valve opening and closing.
    Type: Application
    Filed: September 10, 2015
    Publication date: September 7, 2017
    Applicant: BorgWarner Inc.
    Inventors: Christopher J. PLUTA, Michael W. MARSH
  • Publication number: 20170248045
    Abstract: An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.
    Type: Application
    Filed: August 24, 2015
    Publication date: August 31, 2017
    Inventors: Larry A. PRITCHARD, Thomas R. BENNER, Christopher J. PLUTA
  • Publication number: 20170241333
    Abstract: A variable compression connecting rod system (10) located in an internal combustion engine (12) and a method of assembly can include a connecting rod (28) mountable to a piston pin (26) having a first longitudinal axis at one end and 5 mountable to a crankpin (22) having a second longitudinal axis at a second end portion (36). A hydraulically actuated eccentric rotor (52) rotatable about one of the first and second longitudinal axis. The eccentric rotor (52) including first and second vanes (54a, 54b) for driving the rotor between first and second angular positions in response to fluid pressure acting on the first and second vanes. The eccentric rotor 10 (52) having an eccentric surface area with different radial distances (80, 82) movable into alignment with a longitudinal axis of the connecting rod (28) for varying a longitudinal length of the connecting rod (28) between the first and second longitudinal axis.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 24, 2017
    Inventors: David B. ROTH, Christopher J. PLUTA, Paul A. DARSKY, Daniel BROWN
  • Publication number: 20170145873
    Abstract: A cam phaser (30, 130, 230) dynamically adjusts a rotational relationship of a camshaft (32) of an internal combustion engine with respect to an engine crankshaft operably connected with a phaser sprocket (42, 142, 242). The cam phaser (30, 130, 230) can include a planetary gear assembly having a ring gear (34, 134, 234) driven by the phaser sprocket (42, 142, 242), a planetary gear carrier (36, 136, 236) connected to the camshaft (32), a sun gear (38, 138, 238), and at least one rotatable planetary gear (40, 140, 240).
    Type: Application
    Filed: May 29, 2015
    Publication date: May 25, 2017
    Inventors: Christopher J. PLUTA, Michael MARSH, Michael GRIEB
  • Patent number: 9297281
    Abstract: A variable cam timing apparatus (10) and method of assembly for transmitting rotational torque between a driving rotary member (15b) and a driven rotary member (15a). The flexible coupling (14) can include an axis of rotation coinciding with, and an outer peripheral edge (14a) extending at least partially around, or completely surrounding, a common rotational axis of the driving rotary member (15b) and the driven rotary member (15a). The flexible coupling (14) including a flexible body (14b) having a plurality of apertures (14c, 14d) formed therein at angularly spaced positions relative to one another for connection therethrough with respect to the driving and the driven rotary members (15b, 15a) permitting adjustment for perpendicularity and axial misalignment, while maintaining a torsionally stiff coupling between the driving and driven rotary members (15b, 15a).
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 29, 2016
    Assignee: BorgWarner, Inc.
    Inventors: James Sisson, Christopher J. Pluta
  • Patent number: 9175611
    Abstract: A flexible coupling linkage (14) anchors a housing (16) that at least partially encloses a rotor (18) of an actuator (22) against rotation, while allowing free movement of the housing (16) in two other planes relative to the rotor (18) to match an angular rotational plane orientation of the rotor (18) to prevent binding between the housing (16) and the rotor (18) due to misalignment. The flexible coupling linkage (14) can be selected from a group of pivot joints (24a, 24b) including at least one of a pivot pin joint (30, 34), a ball-and-socket joint (32), and any combination thereof.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: November 3, 2015
    Assignee: BorgWarner, Inc.
    Inventors: Christopher J. Pluta, Mark M. Wigsten, Michael W. Marsh
  • Publication number: 20150300272
    Abstract: The variable compression ratio piston system for an engine adjusts the compression ratio of the engine piston by way of hydraulic fluid distributed between a pair of chambers formed in a pair of bores receiving control pistons mechanically coupled to the engine piston. A control valve selectively permits flow of hydraulic fluid between the high compression ratio line and the low compression ratio line. A variable force solenoid controlled by an engine control unit preferably controls the position of the control valve. The position of the spool controls whether hydraulic fluid can flow toward the first chamber, toward the second chamber, or not at all. Flow of hydraulic fluid is actuated by alternating forces from inertial and combustion forces on a crankshaft from operation of the engine.
    Type: Application
    Filed: December 4, 2013
    Publication date: October 22, 2015
    Inventor: Christopher J. PLUTA
  • Patent number: 9145799
    Abstract: A torque pulsated variable cam timing camshaft arrangement for a reciprocating piston, internal combustion engine is provided. The arrangement includes a sprocket. A torque pulsated phaser unit is operatively associated with the sprocket. A camshaft is operatively associated with the sprocket and the camshaft torsionally powers the phaser unit. The camshaft has a cam lobe engaged with a first cam follower for controlling a position of a spring biased valve. A spring biased second cam follower is engaged with the cam lobe providing a torsional input to the camshaft.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 29, 2015
    Assignee: BORGWARNER INC.
    Inventors: Mark M. Wigsten, Philip Mott, Christopher J. Pluta
  • Patent number: 9080471
    Abstract: A cam torque actuated variable cam timing phaser can include a rotor (20) enclosed by an endplate (64) within a housing (10). The housing (10) can have at least one cavity (10a) to be divided by a vane (22) rigidly attached to the rotor (20). The vane (22) can divide the cavity (10a) into a first chamber (16) and a second chamber (18). Passages (26, 28, 56, 58) can connect the first and second chambers (16, 18) facilitating oscillation of the vane (20) within the cavity (10a). A detent valve (50) can move between an open position and a closed position. When in the open position, the detent valve (50) can connect portions of a detent passage (56, 58) extending through the rotor (20) and through the endplate (64) allowing pressurized actuating fluid flow with respect to the first and second chambers (16, 18) in response to a relative angular position of the rotor (20) with respect to the endplate (64). A lock pin (60) can move between a locked position and a released position.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 14, 2015
    Assignee: BorgWarner, Inc.
    Inventors: Christopher J. Pluta, Mark Wigsten, Braman Wing