Patents by Inventor Christopher J. Salvestrini

Christopher J. Salvestrini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10310540
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 4, 2019
    Assignee: Lutron Technology Company LLC
    Inventors: Donald F. Hausman, Jr., Robert C. Newman, Jr., Christopher J. Salvestrini
  • Patent number: 10234890
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 19, 2019
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, Jr., Christopher J. Salvestrini
  • Publication number: 20190081568
    Abstract: A load control device for controlling the power delivered from an AC power source to an electrical load includes a thyristor, a gate coupling circuit for conducting a gate current through a gate of the thyristor, and a control circuit for controlling the gate coupling circuit to conduct the gate current through a first current path to render the thyristor conductive at a firing time during a half cycle. The gate coupling circuit is able to conduct the gate current through the first current path again after the firing time, but the gate current is not able to be conducted through the gate from a transition time before the end of the half-cycle until approximately the end of the half-cycle. The load current is able to be conducted through a second current path to the electrical load after the transition time until approximately the end of the half-cycle.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 14, 2019
    Applicant: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, JR., Daniel F. Carmen, Christopher J. Salvestrini, Matthew V. Harte
  • Patent number: 10128772
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load includes a thyristor, a gate coupling circuit for conducting current through a gate terminal of the thyristor, a controllable switching circuit coupled between first and second main terminals of the thyristor, and a control circuit for controlling the gate coupling circuit to conduct a pulse of current through the gate terminal to render the thyristor conductive at a firing time during a half cycle. The gate coupling circuit is able to conduct at least one other pulse of current through the gate terminal after the firing time until a transition time before an end of the half-cycle. The control circuit is configured to render the controllable switching circuit conductive to conduct current through the electrical load between approximately the transition time until approximately the end of the half-cycle.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 13, 2018
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, Jr., Daniel F. Carmen, Christopher J. Salvestrini, Matthew V. Harte
  • Publication number: 20180234027
    Abstract: A load control device for controlling the power delivered from an AC power source to an electrical load includes a thyristor, a gate coupling circuit for conducting a gate current through a gate of the thyristor, and a control circuit for controlling the gate coupling circuit to conduct the gate current through a first current path to render the thyristor conductive at a firing time during a half cycle. The gate coupling circuit is able to conduct the gate current through the first current path again after the firing time, but the gate current is not able to be conducted through the gate from a transition time before the end of the half-cycle until approximately the end of the half-cycle. The load current is able to be conducted through a second current path to the electrical load after the transition time until approximately the end of the half-cycle.
    Type: Application
    Filed: April 6, 2018
    Publication date: August 16, 2018
    Applicant: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, JR., Daniel F. Carmen, Christopher J. Salvestrini, Matthew V. Harte
  • Publication number: 20180210481
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Application
    Filed: March 26, 2018
    Publication date: July 26, 2018
    Applicant: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, JR., Christopher J. Salvestrini
  • Patent number: 9941811
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load includes a thyristor, a first current path for conducting current through a gate terminal of the thyristor, and a control circuit for controlling the first current path to conduct a pulse of current through the gate terminal to render the thyristor conductive at a firing time during a present half cycle. The first current path is able to conduct at least one other pulse of current through the gate terminal between the firing time, and a second time that occurs before an end of the present half-cycle, but is prevented from conducting pulses of current between the second time and the end of the present half-cycle. The load control device includes a second current path for conducting current through the electrical load if the thyristor becomes and remains non-conductive during the present half-cycle.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 10, 2018
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, Jr., Daniel F. Camen, Christopher J. Salvestrini, Matthew V. Harte
  • Patent number: 9927829
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: March 27, 2018
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventors: Donald F. Hausman, Jr., Robert C. Newman, Jr., Christopher J. Salvestrini
  • Patent number: 9853561
    Abstract: A two-wire load control device (such as, a dimmer switch) for controlling the amount of power delivered from an AC power source to an electrical load (such as, a high-efficiency lighting load) includes a thyristor coupled between the source and the load, a gate coupling circuit comprising two MOS-gated transistors, and a control circuit. The control circuit generates first and second drive voltages for individually controlling the MOS-gated transistors, and controls the gate coupling circuit to cause the MOS-gated transistors to conduct a pulse of current through a gate terminal of the thyristor to render the thyristor conductive at a firing time during a present half cycle of the AC power source, and to allow the MOS-gated transistors to conduct at least one other pulse of current through the gate terminal after the firing time during the present half cycle.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: December 26, 2017
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, Jr., Christopher J. Salvestrini, Matthew V. Harte
  • Publication number: 20170064798
    Abstract: A load control device is able to receive radio-frequency (RF) signals from a Wi-Fi-enabled device, such as a smart phone, via a wireless local area network. The load control device comprises a controllably conductive device adapted to be coupled in series between an AC power source and an electrical load, a controller for rendering the controllably conductive device conductive and non-conductive, and a Wi-Fi module operable to receive the RF signals from the wireless network. The controller controls the controllably conductive device to adjust the power delivered to the load in response to the wireless signals received from the wireless network. The load control device may further comprise an optical module operable to receive an optical signal, such that the controller may obtain an IP address from the received optical signal and control the power delivered to the load in response to a wireless signal that includes the IP address.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 2, 2017
    Applicant: Lutron Electronics Co., Inc.
    Inventors: Theodore F. Economy, John C. Browne, William Bryce Fricke, Galen Edgar Knode, Ryan S. Bedell, Christopher J. Salvestrini
  • Publication number: 20170017255
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: Donald F. Hausman, JR., Robert C. Newman, JR., Christopher J. Salvestrini
  • Publication number: 20170017254
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to switch the phase control signal to the forward phase-control mode and provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: Donald F. Hausman, JR., Robert C. Newman, JR., Christopher J. Salvestrini
  • Patent number: 9544977
    Abstract: A load control device is able to receive radio-frequency (RF) signals from a Wi-Fi-enabled device, such as a smart phone, via a wireless local area network. The load control device comprises a controllably conductive device adapted to be coupled in series between an AC power source and an electrical load, a controller for rendering the controllably conductive device conductive and non-conductive, and a Wi-Fi module operable to receive the RF signals from the wireless network. The controller controls the controllably conductive device to adjust the power delivered to the load in response to the wireless signals received from the wireless network. The load control device may further comprise an optical module operable to receive an optical signal, such that the controller may obtain an IP address from the received optical signal and control the power delivered to the load in response to a wireless signal that includes the IP address.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 10, 2017
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventors: Theodore F. Economy, John C. Browne, Jr., William Bryce Fricke, Galen Edgar Knode, Ryan S. Bedell, Christopher J. Salvestrini
  • Patent number: 9489005
    Abstract: A load control device may control the amount of power provided to an electrical load utilizing a phase control signal that operates in a reverse phase control mode, a center phase control mode, and a forward phase control mode. A load control device may be configured to determine that the electrical load should be operated via a phase control signal operating in a forward phase-control mode. After determining to operate the electrical load via the phase control signal in the forward phase-control mode, the load control device may provide the phase control signal in a reverse phase-control mode for a predetermined period of time to the electrical load, for example, to charge a bus capacitor of the electrical load. Subsequently, the load control device may be configured to provide the phase control signal in the forward phase-control mode to the electrical load.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 8, 2016
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventors: Donald F. Hausman, Jr., Robert C. Newman, Jr., Christopher J. Salvestrini
  • Publication number: 20160233785
    Abstract: A load control device for controlling the power delivered from an AC power source to an electrical load includes a thyristor, a gate coupling circuit for conducting a gate current through a gate of the thyristor, and a control circuit for controlling the gate coupling circuit to conduct the gate current through a first current path to render the thyristor conductive at a firing time during a half cycle. The gate coupling circuit is able to conduct the gate current through the first current path again after the firing time, but the gate current is not able to be conducted through the gate from a transition time before the end of the half-cycle until approximately the end of the half-cycle. The load current is able to be conducted through a second current path to the electrical load after the transition time until approximately the end of the half-cycle.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Robert C. Newman, JR., Daniel F. Camen, Christopher J. Salvestrini, Matthew V. Harte
  • Publication number: 20160233784
    Abstract: A two-wire load control device (such as, a dimmer switch) for controlling the amount of power delivered from an AC power source to an electrical load (such as, a high-efficiency lighting load) includes a thyristor coupled between the source and the load, a gate coupling circuit coupled between a first main load terminal and the gate of the thyristor, and a control circuit coupled to a control input of the gate coupling circuit. The control circuit generates a drive voltage for causing the gate coupling circuit to conduct a gate current to thus render the thyristor conductive at a firing time during a half cycle of the AC power source, and to allow the gate coupling circuit to conduct the gate current at any time from the firing time through approximately the remainder of the half cycle, where the gate coupling circuit conducts approximately no net average current to render and maintain the thyristor conductive.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Inventors: Robert J. Newman, JR., Christopher J. Salvestrini, Matthew V. Harte
  • Patent number: 9356531
    Abstract: A load control device for controlling the power delivered from an AC power source to an electrical load includes a thyristor, a first current path for conducting current through a gate terminal of the thyristor, and a control circuit for controlling the first current path to conduct a pulse of current through the gate terminal to render the thyristor conductive at a firing time during a half cycle. The first current path is able to conduct at least one other pulse of current through the gate terminal again after the firing time until, a transition time before the end of the half-cycle, but prevented from conducting pulses of current after the transition time until the end of the half-cycle. The load control device may comprise a second current path for conducting current through the electrical load between the transition time and the end of the half-cycle.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: May 31, 2016
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Robert C. Newman, Jr., Daniel F. Carmen, Christopher J. Salvestrini, Matthew V. Harte
  • Patent number: 9343998
    Abstract: A two-wire load control device (such as, a dimmer switch) for controlling power delivered from an AC power source to an electrical load (such as, a high-efficiency lighting load) includes a thyristor coupled between the source and the load, a first circuit coupled between a first main terminal and a gate terminal of the thyristor to conduct current through the gate terminal, a second circuit coupled between the first main terminal and a second main terminal of the thyristor to conduct current through the load when the thyristor is non-conductive, and a control circuit configured to individually control the first and second circuits. The control circuit renders the first circuit conductive to conduct a pulse of current through the gate terminal to render the thyristor conductive at a firing time, and allows the first circuit to conduct at least one other pulse of current through the gate terminal after the firing time.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: May 17, 2016
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventors: Robert C. Newman, Jr., Christopher J. Salvestrini, Matthew V. Harte
  • Patent number: 9307613
    Abstract: A load control device, such as a dimmer switch, for example, may provide for user adjustment of the shape of a control curve, such as a dimming curve, for example. The load control device may generate a control curve that has a non-linear relationship between a minimum power level, such as a minimum phase angle of a phase-control signal, for example, and a maximum power level, such as a maximum phase angle of the phase-control signal, for example. The load control device switch may have a default control curve, which may have a linear relationship between the minimum power level and the maximum power level. The load control device may provide for the generation of a control curve that includes two or more different slopes from the minimum power level to the maximum power level.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 5, 2016
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventor: Christopher J. Salvestrini
  • Patent number: 9084324
    Abstract: A load control device, such as an LED dimmer switch, for example, may be configured to automatically determine whether to provide a forward or reverse phase control signal to a load. As disclosed herein, such a load control device may provide a plurality of different control signals to the lighting load, for example, during an initial set-up procedure. The load control device may provide the plurality of different control signals to determine an appropriate control signal for the load. Each control signal may be characterized by a load control type and a switching time. The load control type may be one of a forward phase control type, a reverse phase control type, or a full conduction control type. The switching time may include, but is not limited to, switching times of approximately 0 ?s, 10 ?s, 50 ?s, and 100 ?s.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: July 14, 2015
    Assignee: LUTRON ELECTRONICS CO., INC.
    Inventor: Christopher J. Salvestrini