Patents by Inventor Christopher J. Wargo

Christopher J. Wargo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120244050
    Abstract: A cleaning agent for a silver-containing composition is provided which can readily remove silver adhered to an object to be cleaned with excellent operability and low environmental loads. This cleaning agent for the silver-containing composition includes an iron nitrate aqueous solution and used to remove silver derived from a composition containing silver nanoparticles having an average diameter of 1 nm to 100 nm adhered to the object to be cleaned.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Christopher J. WARGO, Kimitaka Sato
  • Patent number: 7942160
    Abstract: The present invention relates to microfluidic systems, including valves and pumps for microfluidic systems. The valves of the invention include check valves such as diaphragm valves and flap valves. Other valves of the invention include one-use valves. The pumps of the present invention include a reservoir and at least two check valves. The reservoir may be of variable volume. The present invention also relates to a flexible microfluidic system. The present invention additionally relates to a method of making microfluidic systems including those of the present invention. The method includes forming a microfluidic system on a master, connecting a support to the microfluidic system and removing the microfluidic system from the master. The support may remain connected to the microfluidic system or the microfluidic system may be transferred to another substrate. The present invention further relates to a method of manipulating a flow of a fluid in a microfluidic system.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 17, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Noo Li Jeon, Daniel T. Chiu, Christopher J. Wargo, Insung S. Choi, Hongkai Wu, Janelle R. Anderson, George M. Whitesides, J. Cooper McDonald, Steven J. Metallo, Howard A. Stone
  • Patent number: 7763362
    Abstract: Disclosed are cohesive metallic structures, comprising sintered metallic nanoparticles, suitable for shielding against electromagnetic interference and radio frequency interference. Also disclosed are methods for forming such structures. Devices for shielding electromagnetic radiation and methods of shielding electromagnetic radiation using such devices are also provided.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: July 27, 2010
    Assignee: PChem Associates, Inc.
    Inventors: Gregory A Jablonski, Michael A Mastropietro, Christopher J. Wargo
  • Publication number: 20080213609
    Abstract: Disclosed are cohesive metallic structures, comprising sintered metallic nanoparticles, suitable for shielding against electromagnetic interference and radio frequency interference. Also disclosed are methods for forming such structures. Devices for shielding electromagnetic radiation and methods of shielding electromagnetic radiation using such devices are also provided.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 4, 2008
    Applicant: PCHEM ASSOCIATES, INC.
    Inventors: Gregory A. Jablonski, Michael A. Mastropietro, Christopher J. Wargo
  • Patent number: 7389689
    Abstract: The present invention include non-porous adherent coatings of chemically inert high purity poly-oligomers deposited on substrates. The coatings are applied and cured on the substrates at relatively low temperatures which permits the coating process to be performed with temperature sensitive structures such as magnets, electronic circuits, electrodes, and bonding pads in place on the substrate. Coated substrates, such as sensors and fluid conduits, have an effective thickness of the protective non-porous coating that is chemically bonded to a surface of the substrate that will be contacted with a fluid. The adherent non-porous coating on the substrate protect it from corrosion, particle generation, swelling, or delamination caused by contact with the fluid.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 24, 2008
    Assignee: Entegris, Inc.
    Inventors: Christopher J. Wargo, Karl Niermeyer
  • Publication number: 20040228734
    Abstract: The present invention relates to microfluidic systems, including valves and pumps for microfluidic systems. The valves of the invention include check valves such as diaphragm valves and flap valves. Other valves of the invention include one-use valves. The pumps of the present invention include a reservoir and at least two check valves. The reservoir may be of variable volume. The present invention also relates to a flexible microfluidic system. The present invention additionally relates to a method of making microfluidic systems including those of the present invention. The method includes forming a microfluidic system on a master, connecting a support to the microfluidic system and removing the microfluidic system from the master. The support may remain connected to the microfluidic system or the microfluidic system may be transferred to another substrate. The present invention further relates to a method of manipulating a flow of a fluid in a microfluidic system.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 18, 2004
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Noo Li Jeon, Daniel T. Chiu, Christopher J. Wargo, Insung S. Choi, Hongkai Wu, Janelle R. Anderson, George M. Whitesides, Justin C. McDonald, Steven J. Metallo, Howard A. Stone
  • Patent number: 6767194
    Abstract: The present invention relates to microfluidic systems, including valves and pumps for microfluidic systems. The valves of the invention include check valves such as diaphragm valves and flap valves. Other valves of the invention include one-use valves. The pumps of the present invention include a reservoir and at least two check valves. The reservoir may be of variable volume. The present invention also relates to a flexible microfluidic system. The present invention additionally relates to a method of making microfluidic systems including those of the present invention. The method includes forming a microfluidic system on a master, connecting a support to the microfluidic system and removing the microfluidic system from the master. The support may remain connected to the microfluidic system or the microfluidic system may be transferred to another substrate. The present invention further relates to a method of manipulating a flow of a fluid in a microfluidic system.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: July 27, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Noo Li Jeon, Daniel T. Chiu, Christopher J. Wargo, Insung S. Choi, Hongkai Wu, Janelle R. Anderson, George M. Whitesides, Justin C. McDonald, Steven J. Metallo, Howard A. Stone
  • Publication number: 20020168278
    Abstract: The present invention relates to microfluidic systems, including valves and pumps for microfluidic systems. The valves of the invention include check valves such as diaphragm valves and flap valves. Other valves of the invention include one-use valves. The pumps of the present invention include a reservoir and at least two check valves. The reservoir may be of variable volume. The present invention also relates to a flexible microfluidic system. The present invention additionally relates to a method of making microfluidic systems including those of the present invention. The method includes forming a microfluidic system on a master, connecting a support to the microfluidic system and removing the microfluidic system from the master. The support may remain connected to the microfluidic system or the microfluidic system may be transferred to another substrate. The present invention further relates to a method of manipulating a flow of a fluid in a microfluidic system.
    Type: Application
    Filed: January 8, 2002
    Publication date: November 14, 2002
    Inventors: Noo Li Jeon, Daniel T. Chiu, Christopher J. Wargo, Insung S. Choi, Hongkai Wu, Janelle R. Anderson, George M. Whitesides, Justin C. McDonald, Steven J. Metallo, Howard A. Stone