Patents by Inventor Christopher K. Breuer

Christopher K. Breuer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10895020
    Abstract: A method for generating a electro spun fiber medical implant including determining dimensions of a portion of anatomy of a patient corresponding to the electro spun fiber medical implant via medical imaging, generating a model of the portion of the anatomy based on the dimensions, the model including one or more solid areas and one or more void areas encompassed within the one or more solid areas, inverting the model to generate a mandrel model, the mandrel model generated based on the one or more void areas, generating the mandrel based on the mandrel model, the mandrel including at least one electrically conductive material therein, and applying an electro-spinning process to the mandrel to generate the electro spun fiber medical implant which circumscribes the mandrel, wherein the mandrel is removable from within the electro spun fiber medical implant after a disassembly process.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 19, 2021
    Assignees: CHILDREN'S NATIONAL MEDICAL CENTER, RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL, NANOFIBER SOLUTIONS LLC
    Inventors: Axel Krieger, Narutoshi Hibino, Jed Johnson, Justin Opfermann, Carolyn Cochenour Dorgan, Christopher K. Breuer
  • Patent number: 10300082
    Abstract: A composition containing a macrophage inhibitor may be administered in an effective amount to prevent, inhibit or reduce restenosis, thrombus or aneurysm formation in implanted polymeric vascular grafts. The composition may be administered prior to vascular graft implantation, at the same time as vascular graft implantation, following vascular graft implantation, or any combination thereof. Examplary macrophage inhibitors include bisphosphonates, anti-folate drugs and antibodies, preferably in a controlled release or liposomal formulation.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: May 28, 2019
    Assignee: Yale University
    Inventors: Christopher K. Breuer, Tarek Fahmy
  • Publication number: 20180245243
    Abstract: A method for generating a electro spun fiber medical implant including determining dimensions of a portion of anatomy of a patient corresponding to the electro spun fiber medical implant via medical imaging, generating a model of the portion of the anatomy based on the dimensions, the model including one or more solid areas and one or more void areas encompassed within the one or more solid areas, inverting the model to generate a mandrel model, the mandrel model generated based on the one or more void areas, generating the mandrel based on the mandrel model, the mandrel including at least one electrically conductive material therein, and applying an electro-spinning process to the mandrel to generate the electro spun fiber medical implant which circumscribes the mandrel, wherein the mandrel is removable from within the electro spun fiber medical implant after a disassembly process.
    Type: Application
    Filed: August 26, 2016
    Publication date: August 30, 2018
    Applicants: CHILDREN'S NATIONAL MEDICAL CENTER, RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL, NANOFIBER SOLUTIONS
    Inventors: Axel KRIEGER, Narutoshi HIBINO, Jed JOHNSON, Justin OPFERMANN, Carolyn COCHENOUR, Christopher K. BREUER
  • Publication number: 20160271152
    Abstract: A composition containing a macrophage inhibitor may be administered in an effective amount to prevent, inhibit or reduce restenosis, thrombus or aneurysm formation in implanted polymeric vascular grafts. The composition may be administered prior to vascular graft implantation, at the same time as vascular graft implantation, following vascular graft implantation, or any combination thereof. Examplary macrophage inhibitors include bisphosphonates, anti-folate drugs and antibodies, preferably in a controlled release or liposomal formulation.
    Type: Application
    Filed: April 13, 2016
    Publication date: September 22, 2016
    Inventors: Christopher K. Breuer, Tarek Fahmy
  • Patent number: 9326951
    Abstract: A composition containing a macrophage inhibitor may be administered in an effective amount to prevent, inhibit or reduce restenosis, thrombus or aneurysm formation in implanted polymeric vascular grafts. The composition may be administered prior to vascular graft implantation, at the same time as vascular graft implantation, following vascular graft implantation, or any combination thereof. Exemplary macrophage inhibitors include bisphosphonates, anti-folate drugs and antibodies, preferably in a controlled release or liposomal formulation.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: May 3, 2016
    Assignee: Yale University
    Inventors: Christopher K. Breuer, Tarek Fahmy
  • Publication number: 20140147484
    Abstract: A composition containing a macrophage inhibitor may be administered in an effective amount to prevent, inhibit or reduce restenosis, thrombus or aneurysm formation in implanted polymeric vascular grafts. The composition may be administered prior to vascular graft implantation, at the same time as vascular graft implantation, following vascular graft implantation, or any combination thereof. Examplary macrophage inhibitors include bisphosphonates, anti-folate drugs and antibodies, preferably in a controlled release or liposomal formulation.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 29, 2014
    Applicant: YALE UNIVERSITY
    Inventors: Christopher K. Breuer, Tarek Fahmy
  • Patent number: 6348069
    Abstract: It has been discovered that improved yields of engineered tissue following implantation, and engineered tissue having enhanced mechanical strength and flexibility or pliability, can be obtained by implantation, preferably subcutaneously, of a fibrous polymeric matrix for a period of time sufficient to obtain ingrowth of fibrous tissue and/or blood vessels, which is the removed for subsequent implantation at the site where the implant is desired. The matrix is optionally seeded prior to the first implantation, after ingrowth of the fibrous tissue, or at the time of reimplantation. The time required for fibrous ingrowth typically ranges from days to weeks. The method is particularly useful in making valves and tubular structures, especially heart valves and blood vessels.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: February 19, 2002
    Assignee: Children's Medical Center Corporation
    Inventors: Joseph P. Vacanti, Christopher K. Breuer, Beverly E. Chaignaud, Toshiraru Shin'oka
  • Patent number: 5855610
    Abstract: It has been discovered that improved yields of engineered tissue following implantation, and engineered tissue having enhanced mechanical strength and flexibility or pliability, can be obtained by implantation, preferably subcutaneously, of a fibrous polymeric matrix for a period of time sufficient to obtain ingrowth of fibrous tissue and/or blood vessels, which is the removed for subsequent implantation at the site where the implant is desired. The matrix is optionally seeded prior to the first implantation, after ingrowth of the fibrous tissue, or at the time of reimplantation. The time required for fibrous ingrowth typically ranges from days to weeks. The method is particularly useful in making valves and tubular structures, especially heart valves and blood vessels.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: January 5, 1999
    Assignee: Children's Medical Center Corporation
    Inventors: Joseph P. Vacanti, Christopher K. Breuer, Beverly E. Chaignaud, Toshiraru Shin'oka
  • Patent number: RE42479
    Abstract: It has been discovered that improved yields of engineered tissue following implantation, and engineered tissue having enhanced mechanical strength and flexibility or pliability, can be obtained by implantation, preferably subcutaneously, of a fibrous polymeric matrix for a period of time sufficient to obtain ingrowth of fibrous tissue and/or blood vessels, which is the removed for subsequent implantation at the site where the implant is desired. The matrix is optionally seeded prior to the first implantation, after ingrowth of the fibrous tissue, or at the time of reimplantation. The time required for fibrous ingrowth typically ranges from days to weeks. The method is particularly useful in making valves and tubular structures, especially heart valves and blood vessels.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: June 21, 2011
    Assignee: Children's Medical Center Corporation
    Inventors: Joseph P. Vacanti, Christopher K. Breuer, Berverly E. Chaignaud, Toshiraru Shin'oka
  • Patent number: RE42575
    Abstract: It has been discovered that improved yields of engineered tissue following implantation, and engineered tissue having enhanced mechanical strength and flexibility or pliability, can be obtained by implantation, preferably subcutaneously, of a fibrous polymeric matrix for a period of time sufficient to obtain ingrowth of fibrous tissue and/or blood vessels, which is the removed for subsequent implantation at the site where the implant is desired. The matrix is optionally seeded prior to the first implantation, after ingrowth of the fibrous tissue, or at the time of reimplantation. The time required for fibrous ingrowth typically ranges from days to weeks. The method is particularly useful in making valves and tubular structures, especially heart valves and blood vessels.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 26, 2011
    Assignee: Children's Medical Center Corporation
    Inventors: Joseph P. Vacanti, Christopher K. Breuer, Berverly E. Chaignaud, Toshiraru Shin'oka