Patents by Inventor Christopher Koeppen

Christopher Koeppen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240017524
    Abstract: A wafer has a layer containing silicon, a layer of polycrystalline diamond deposited on the silicon-containing layer, and a bow-compensation layer on the other side of the silicon-containing layer for reducing wafer-bow. A method of making a bonded structure includes an activation process for creating dangling bonds on the surface of one substrate, followed by contact-bonding the surface to a second substrate at low temperature. A bonded structure may include two substrates contact bonded to each other, one substrate including a layer containing silicon, a layer of polycrystalline diamond, a bow-compensation layer for reducing wafer-bow of the first substrate, and the other substrate including gallium nitride, silicon carbide, lithium niobate, lithium tantalate, gallium arsenide, indium phosphide, or another suitable material other than diamond.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Inventors: Wen-Qing XU, Di LAN, Christopher KOEPPEN
  • Patent number: 11738539
    Abstract: A wafer has a layer containing silicon, a layer of polycrystalline diamond deposited on the silicon-containing layer, and a bow-compensation layer on the other side of the silicon-containing layer for reducing wafer-bow. A method of making a bonded structure includes an activation process for creating dangling bonds on the surface of one substrate, followed by contact-bonding the surface to a second substrate at low temperature. A bonded structure may include two substrates contact bonded to each other, one substrate including a layer containing silicon, a layer of polycrystalline diamond, a bow-compensation layer for reducing wafer-bow of the first substrate, and the other substrate including gallium nitride, silicon carbide, lithium niobate, lithium tantalate, gallium arsenide, indium phosphide, or another suitable material other than diamond.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: August 29, 2023
    Assignee: II-VI DELAWARE, INC
    Inventors: Wen-Qing Xu, Di Lan, Christopher Koeppen
  • Publication number: 20210359290
    Abstract: An immobilized chalcogen system or body includes an element of chalcogen, an electrically conductive material, and a hydrophilic membrane gate. The hydrophilic membrane gate may be used to isolate hydrophobic regions, one related to polychalcogenide ion(s) and another related to a hydrophobic electrolyte system. The hydrophilic membrane gate may prevent polychalcogenide from forming, and may provide control of undesirable parasitic mass transport and undesirable electron transport inside a chalcogen-based battery, and thereby allow the battery to cycle at a high specific capacity with a long cycling life. If desired, the immobilized chalcogen system or body may be employed in a cathode of a rechargeable battery.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 18, 2021
    Inventors: Wen-Qing Xu, Christopher Koeppen, Chengkun Xu, Charan Masarupu, Colin Moore, Xiaoming Li
  • Publication number: 20210283881
    Abstract: A wafer has a layer containing silicon, a layer of polycrystalline diamond deposited on the silicon-containing layer, and a bow-compensation layer on the other side of the silicon-containing layer for reducing wafer-bow. A method of making a bonded structure includes an activation process for creating dangling bonds on the surface of one substrate, followed by contact-bonding the surface to a second substrate at low temperature. A bonded structure may include two substrates contact bonded to each other, one substrate including a layer containing silicon, a layer of polycrystalline diamond, a bow-compensation layer for reducing wafer-bow of the first substrate, and the other substrate including gallium nitride, silicon carbide, lithium niobate, lithium tantalate, gallium arsenide, indium phosphide, or another suitable material other than diamond.
    Type: Application
    Filed: April 23, 2021
    Publication date: September 16, 2021
    Inventors: Wen-Qing Xu, Di Lan, Christopher Koeppen
  • Publication number: 20200070665
    Abstract: A charging station including a “reservoir” energy supply is proposed. The reservoir supply is formed of one or more rapid charge/discharge batteries that are also able to hold their charge for an extended period of time (as compared to conventional supercapacitors, for example). The reservoir supply is contemplated to accommodate transient increases in power demand when a given charging station has to re-charge several vehicles (for example) at the same time. The rechargeable batteries forming the reservoir are advantageously configured to thereafter be re-charged at a fast rate as well, making them ideal candidates for re-charging from secondary sources (such as, but not limited to, solar, fuel cells, wind, and the like).
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Applicant: II-VI Delaware, Inc.
    Inventors: Shailesh Patkar, Yancheng Zhang, Giovanni Barbarossa, Wen-Qing Xu, Christopher Koeppen, Elgin Eissler
  • Publication number: 20070003186
    Abstract: An optical switch is provided which includes a plurality of input/output ports for receiving one or more wavelength component(s) of an optical signal. The optical switch also includes an optical arrangement that directs the wavelength component to any given one of the plurality of input/output ports. The given input/output port may be selected from among any of the plurality of input/output ports. If the optical signal includes a plurality of wavelength components, the optical arrangement includes at least one wavelength selective element such as a thin film filter. The wavelength selective element selects one of the wavelength components from among the plurality of wavelength components. The optical arrangement also includes a plurality of optical elements each associated with one of the wavelength selective elements.
    Type: Application
    Filed: June 17, 2004
    Publication date: January 4, 2007
    Inventors: Jefferson Wagener, Christopher Koeppen, Allan Schweitzer, Thomas Strasser