Patents by Inventor Christopher L Pulliam

Christopher L Pulliam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210196964
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Application
    Filed: December 31, 2020
    Publication date: July 1, 2021
    Inventors: Evan D. Schnell, Scott R. Stanslaski, Ilan D. Gordon, Steven M. Goetz, Hijaz M. Haris, Eric J. Panken, Timothy R. Abraham, Thomas L. Chouinard, Susan E. Heilman Kilbane, Karan Chitkara, Christopher M. Arnett, Alicia W. Thompson, Kevin C. Johnson, Ankush Thakur, Lukas Valine, Christopher L. Pulliam, Brady N. Fetting, Rucha Gokul G. Samant, Andrew H. Houchins, Caleb C. Zarns
  • Publication number: 20210196958
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Application
    Filed: December 31, 2020
    Publication date: July 1, 2021
    Inventors: Evan D. Schnell, Scott R. Stanslaski, Ilan D. Gordon, Steven M. Goetz, Hijaz M. Haris, Eric J. Panken, Timothy R. Abraham, Thomas L. Chouinard, Susan E. Heilman Kilbane, Karan Chitkara, Christopher M. Arnett, Alicia W. Thompson, Kevin C. Johnson, Ankush Thakur, Lukas Valine, Christopher L. Pulliam, Brady N. Fetting, Rucha Gokul G. Samant, Andrew H. Houchins, Caleb C. Zarns
  • Publication number: 20210196948
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first response of a first sensed signal of the patient to the electrical stimulation therapy and a second response of a second sensed signal of the patient to the electrical stimulation therapy. Based on the first response and the second response for controlling the electrical stimulation therapy, the medical system selects one of the first sensed signal and the second sensed signal of the patient. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike, Christopher L. Pulliam
  • Patent number: 11045652
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20210187302
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on a posture state of a patient are described. For example, a system may include sensing circuitry configured to sense an ECAP signal and processing circuitry configured to control delivery of the electrical stimulation to a patient according to a first value of a stimulation parameter and determine a characteristic value of the ECAP signal. The processing circuitry may also be configured to receive, from a sensor, a posture state signal representing a posture state of the patient, determine, based on the posture state signal, a gain value for the stimulation parameter, adjust, based on the characteristic value of the ECAP signal and the gain value, the first value of the stimulation parameter to a second value of the stimulation parameter, and control delivery of the electrical stimulation according to the second value of the stimulation parameter.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Inventors: Christopher L. Pulliam, David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187298
    Abstract: Systems, devices, and techniques are described for adjusting electrical stimulation based on detected ECAPs. In one example, a medical device includes processing circuitry configured to control stimulation circuitry to deliver a first electrical stimulation pulse and sensing circuitry to detect, after delivery of the first electrical stimulation pulse, an ECAP signal. The processing circuitry may be configured to determine a characteristic value of the ECAP signal, determine an ECAP differential value that indicates whether the characteristic value of the ECAP signal is one of greater than a selected ECAP characteristic value or less than the selected ECAP characteristic value, determine, based on the ECAP differential value, a gain value, determine, based on the gain value, a parameter value that at least partially defines a second electrical stimulation pulse, and control the stimulation circuitry to deliver the second electrical stimulation pulse according to the parameter value.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187297
    Abstract: Systems, devices, and techniques for adjusting electrical stimulation based on a posture state of a patient are described. For example, processing circuitry is configured to control delivery of a first informed stimulation pulse defined by at least a first value of an informed stimulation parameter, control delivery of a control stimulation pulse to a patient, the control stimulation pulse defined by at least a first value of a control stimulation parameter, determine a characteristic value of the ECAP signal elicited from the control stimulation pulse, receive, from a sensor, a posture state signal representing a posture state of the patient, and adjust, based on the characteristic value of the ECAP signal and the posture state signal, the first value of the informed stimulation parameter to a second value of the informed stimulation parameter.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Inventors: Christopher L. Pulliam, David A. Dinsmoor, Hank Bink, Kristin N. Hageman
  • Publication number: 20210187300
    Abstract: Systems, devices, and techniques are described for determining a posture state of a patient based on detected evoked compound action potentials (ECAPs). In one example, a medical device includes stimulation circuitry configured to deliver electrical stimulation and sensing circuitry configured to sense a plurality of evoked compound action potential (ECAP) signals. The medical device also includes processing circuitry configured to control the stimulation circuitry to deliver a plurality of electrical stimulation pulses having different amplitude values, control the sensing circuitry to detect, after delivery of each electrical stimulation pulse of the plurality of electrical stimulation pulses, a respective ECAP signal of the plurality of ECAP signals, and determine, based on the plurality of ECAP signals, a posture state of the patient.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Kristin N. Hageman, Hank Bink, Jiashu Li
  • Publication number: 20210187299
    Abstract: Devices, systems, and techniques are described for selecting an evoked compound action potential (ECAP) growth curve based on a posture of a patient. The ECAP growth curve defines a relationship between a parameter defining delivery of stimulation pulses delivered to the patient and a parameter of an ECAP signal of a nerve of a patient elicited by a stimulation pulse. In one example, a medical device detects a posture of a patient and selects an ECAP growth curve corresponding to the detected posture. The medical device selects, based on the ECAP growth curve corresponding to the detected posture and a characteristic of a detected ECAP signal, a value for a parameter for defining delivery of the stimulation pulses to the patient and controls delivery of the stimulation pulses according to the selected value for the parameter.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Patent number: 11033742
    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Eric J. Panken, Jadin C. Jackson, Yizi Xiao, Christopher L. Pulliam
  • Publication number: 20210121700
    Abstract: Techniques are disclosed for implementing the use of electrically evoked compound action potentials (ECAPs) to adaptively adjust parameters of high frequency electrical stimulation. In one example, a medical device delivers electrical stimulation therapy comprising a train of electrical stimulation pulses to a patient, wherein the train of electrical stimulation pulses comprises a pulse frequency greater than or equal to 500 Hertz. After delivering the train of electrical stimulation pulses, the medical device ceases delivery of the high frequency electrical stimulation therapy for a predetermined period of time. During the predetermined period of time, the medical device senses an ECAP from the patient and determines, based on the sensed ECAP, a value of a parameter at least partially defining the train of electrical stimulation pulses.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 29, 2021
    Inventors: David A. Dinsmoor, Christopher L. Pulliam, Hank Bink, Kristin N. Hageman
  • Publication number: 20210121699
    Abstract: Evoked compound action potentials (ECAPs) may be used to determine therapy. For example, a medical device includes stimulation generation circuitry and processing circuitry. The processing circuitry is configured to determine if a characteristic of a first ECAP is greater than a threshold ECAP characteristic value. Based on the characteristic of the first ECAP being greater than the threshold ECAP characteristic value, the processing circuitry is configured to decrease a parameter of a first set of pulses delivered by the stimulation generation circuitry after the first ECAP. Additionally, the processing circuitry is configured to determine if a characteristic of a second ECAP is less than the threshold ECAP characteristic value and based on the characteristic of the second ECAP being less than the threshold ECAP characteristic value, increase a parameter of a second set of pulses delivered by the stimulation generation circuitry after the second ECAP.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 29, 2021
    Inventors: David A. Dinsmoor, Kristin N. Hageman, Hank Bink, Christopher L. Pulliam
  • Patent number: 10974049
    Abstract: The present invention relates to methods for remotely and intelligently tuning movement disorder of therapy systems. The present invention still further provides methods of quantifying movement disorders for the treatment of patients who exhibit symptoms of such movement disorders including, but not limited to, Parkinson's disease and Parkinsonism, Dystonia, Chorea, and Huntington's disease, Ataxia, Tremor and Essential Tremor, Tourette syndrome, stroke, and the like. The present invention yet further relates to methods of remotely and intelligently or automatically tuning a therapy device using objective quantified movement disorder symptom data to determine the therapy setting or parameters to be transmitted and provided to the subject via his or her therapy device. The present invention also provides treatment and tuning intelligently, automatically and remotely, allowing for home monitoring of subjects.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 13, 2021
    Assignee: Great Lakes NeuroTechnologies Inc
    Inventors: Dustin A Heldman, Christopher L Pulliam, Joseph P Giuffrida, Thomas O Mera
  • Publication number: 20210085976
    Abstract: The present invention relates to methods for remotely and intelligently tuning movement disorder of therapy systems. The present invention still further provides methods of quantifying movement disorders for the treatment of patients who exhibit symptoms of such movement disorders including, but not limited to, Parkinson's disease and Parkinsonism, Dystonia, Chorea, and Huntington's disease, Ataxia, Tremor and Essential Tremor, Tourette syndrome, stroke, and the like. The present invention yet further relates to methods of remotely and intelligently or automatically tuning a therapy device using objective quantified movement disorder symptom data to determine the therapy setting or parameters to be transmitted and provided to the subject via his or her therapy device. The present invention also provides treatment and tuning intelligently, automatically and remotely, allowing for home monitoring of subjects.
    Type: Application
    Filed: October 13, 2020
    Publication date: March 25, 2021
    Applicant: Great Lakes NeuroTechnologies Inc.
    Inventors: Dustin A. Heldman, Christopher L. Pulliam, Joseph P. Giuffrida, Thomas O. Mera
  • Patent number: 10881856
    Abstract: The present invention relates to systems adapted for remotely and intelligently tuning movement disorder of therapy systems. The present invention still further provides systems adapted for quantifying movement disorders for the treatment of patients who exhibit symptoms of such movement disorders including, but not limited to, Parkinson's disease and Parkinsonism, Dystonia, Chorea, and Huntington's disease, Ataxia, Tremor and Essential Tremor, Tourette syndrome, stroke, and the like. The present invention yet further relates to systems adapted for remotely and intelligently or automatically tuning a therapy device using objective quantified movement disorder symptom data to determine the therapy setting or parameters to be transmitted and provided to the subject via his or her therapy device. The systems of the present invention also are adapted to provide treatment and tuning intelligently, automatically and remotely, allowing for home monitoring of subjects.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: January 5, 2021
    Assignee: Great Lakes NeuroTechnologies Inc.
    Inventors: Dustin A. Heldman, Christopher L. Pulliam, Joseph P. Giuffrida, Thomas O. Mera
  • Publication number: 20200338351
    Abstract: Techniques are described to determine a location of at least one oscillatory signal source in a patient. Processing circuitry may determine expected electrical signal levels based on a hypothetical location of the at least one oscillatory signal source. Processing circuitry may determine the electrical signal levels and determine an error value based on the expected electrical signal levels and the determined electrical signal levels. Processing circuitry may adjust the hypothetical location of the at least one oscillatory signal source until the error value is less than or equal to a threshold value, including the example where the error value is minimized.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Eric J. Panken, Christopher L. Pulliam, Jadin C. Jackson, Yizi Xiao
  • Publication number: 20200338350
    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Eric J. Panken, Jadin C. Jackson, Yizi Xiao, Christopher L. Pulliam
  • Publication number: 20200338353
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Patent number: 10478626
    Abstract: The present invention relates to methods for tuning treatment parameters in movement disorder therapy systems. The present invention further relates to a system for screening patients to determine viability as candidates for certain therapy modalities, such as deep brain stimulation (DBS). The present invention still further provides methods of quantifying movement disorders for the treatment of patients who exhibit symptoms of such movement disorders including, but not limited to, Parkinson's disease and Parkinsonism, Dystonia, Chorea, and Huntington's disease, Ataxia, Tremor and Essential Tremor, Tourette syndrome, stroke, and the like. The present invention yet further relates to methods of tuning a therapy device using objective quantified movement disorder symptom data acquired by a movement disorder diagnostic device to determine the therapy setting or parameters to be provided to the subject via his or her therapy device.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: November 19, 2019
    Assignee: Great Lakes NeuroTechnologies Inc.
    Inventors: Dustin A Heldman, Christopher L Pulliam, Joseph P Giuffrida, Thomas O Mera
  • Patent number: 10383571
    Abstract: The present invention relates to systems, devices and methods for acquiring, measuring, monitoring, processing and analyzing physiological signals. More particularly, the present invention relates to using physiological signals to determine a subject's response to various conditions, variables or constraints. Still more particularly, the present invention relates to monitoring the subject's external body motion and/or environmental factors and determining the amount of pain a subject is suffering as a result of the motion and factors. Still more particularly, the present invention relates to a system, device and methods of quantifying a subject's pain to provide an objective measurement of the subject's pain. The present invention further relates to establishing and improving pain management protocols and therapy or treatment for the subject's pain based on the quantified pain measurement.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: August 20, 2019
    Assignee: Great Lakes NeuroTechnologies Inc.
    Inventors: Christopher L. Pulliam, Joseph P Giuffrida