Patents by Inventor Christopher Liddle

Christopher Liddle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11440889
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 13, 2022
    Assignees: The Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Publication number: 20210147365
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 1, 2020
    Publication date: May 20, 2021
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Patent number: 10815203
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: October 27, 2020
    Assignees: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Publication number: 20200123113
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 10, 2019
    Publication date: April 23, 2020
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Patent number: 10450277
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 22, 2019
    Assignees: The Salk Institute for Biological Studies, University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Patent number: 10301268
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 28, 2019
    Assignees: The Salk Institute for Biological Studies, University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F. W. Keana, Christopher Liddle
  • Patent number: 10238667
    Abstract: The present disclosure provides compositions that include a nanoparticle and a compound that increases the biological activity of the vitamin D receptor (VDR) (e.g., a VDR agonist), and methods of using such compounds to increase retention or storage of vitamin A, vitamin D, and/or lipids by a cell, such as an epithelial or stellate cell. Such methods can be used to treat or prevent fibrosis.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: March 26, 2019
    Assignees: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ning Ding, Michael Downes, Christopher Liddle, Ronald M. Evans, Nanthakumar Subramaniam
  • Publication number: 20190084939
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 21, 2019
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Patent number: 10077268
    Abstract: Novel FXR agonists are disclosed, embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 18, 2018
    Assignee: Salk Institute for Biological Studies
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, John F.W. Keana, Christopher Liddle
  • Publication number: 20180071318
    Abstract: The present disclosure provides compositions that include a nanoparticle and a compound that increases the biological activity of the vitamin D receptor (VDR) (e.g., a VDR agonist), and methods of using such compounds to increase retention or storage of vitamin A, vitamin D, and/or lipids by a cell, such as an epithelial or stellate cell. Such methods can be used to treat or prevent fibrosis.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 15, 2018
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ning Ding, Michael Downes, Christopher Liddle, Ronald M. Evans
  • Patent number: 9872866
    Abstract: The present disclosure provides compositions that include a nanoparticle and a compound that increases the biological activity of the vitamin D receptor (VDR) (e.g., a VDR agonist), and methods of using such compounds to increase retention or storage of vitamin A, vitamin D, and/or lipids by a cell, such as an epithelial or stellate cell. Such methods can be used to treat or prevent fibrosis.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: January 23, 2018
    Assignees: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ning Ding, Michael Downes, Christopher Liddle, Ronald M. Evans
  • Publication number: 20170066724
    Abstract: Novel compounds having a formula embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 9, 2017
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Annette Atkins, Sungsoon Fang, Jae Myoung Suh, Thomas J. Baiga, Ruth T. Yu, John F.W. Keana, Christopher Liddle
  • Publication number: 20160376279
    Abstract: Novel FXR agonists are disclosed, embodiments of a method of making the same, and of a composition comprising them are disclosed herein. Also disclosed are embodiments of a method of treating or preventing a metabolic disorder in a subject, comprising administering to a subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and treating or preventing a metabolic disorder in the subject. Additionally disclosed are embodiments of a method of treating or preventing inflammation in an intestinal region of a subject, comprising administering to the subject (e.g., via the gastrointestinal tract) a therapeutically effective amount of one or more of the disclosed compounds, thereby activating FXR receptors in the intestines, and thereby treating or preventing inflammation in the intestinal region of the subject.
    Type: Application
    Filed: September 12, 2016
    Publication date: December 29, 2016
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Thomas J. Baiga, John F.W. Keana, Christopher Liddle
  • Publication number: 20160106762
    Abstract: The present disclosure provides compositions that include a nanoparticle and a compound that increases the biological activity of the vitamin D receptor (VDR) (e.g., a VDR agonist), and methods of using such compounds to increase retention or storage of vitamin A, vitamin D, and/or lipids by a cell, such as an epithelial or stellate cell. Such methods can be used to treat or prevent fibrosis.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 21, 2016
    Applicants: Salk Institute for Biological Studies, The University of Sydney
    Inventors: Ning Ding, Michael Downes, Christopher Liddle, Ronald M. Evans
  • Patent number: 9029336
    Abstract: An isolated nucleic acid molecule comprising a nucleotide sequence encoding a transcriptional enhancer of cytochrome P450 (P450) CYP3A4 production or expression, and uses of the nucleic acid molecule for screening compounds for xenobiotic induction of CYP3A4 expression in cells and animals.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: May 12, 2015
    Assignee: The University of Sydney
    Inventors: Christopher Liddle, Bryan James Goodwin
  • Patent number: 8629318
    Abstract: The invention relates to the generation of non-human transgenic animals comprising a reporter construct for producing a detectable amount of a reporter molecule operably linked to a transcriptional regulatory nucleic acid molecule from the human CYP3A4 gene located between the initiation of transcription site of the gene and a position located 13,000 nucleotides upstream from the site. The invention also relates to the use of these animals for determining the effect of a compound, particularly, but not exclusively, a xenobiotic or steroid, on the regulation of expression of the CYP3A4 gene in a human.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 14, 2014
    Assignee: University of Sydney
    Inventors: Christopher Liddle, Bryan James Goodwin, Graham Robertson
  • Patent number: 8318708
    Abstract: This application relates to methods of treating and ameliorating fibrosis, such as fibrosis of the pancreas. In particular, the application relates to methods of using a vitamin D receptor agonist (such as vitamin D, vitamin D analogs, vitamin D precursors, and vitamin D receptor agonists precursors) for the treatment of pancreatic fibrosis.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: November 27, 2012
    Assignees: Salk Institute for Biological Studies, University of Sydney
    Inventors: Ronald M. Evans, Michael Downes, Christopher Liddle, Nanthakumar Subramaniam, Caroline Flora Samer
  • Publication number: 20120171690
    Abstract: The invention relates to the generation of non-human transgenic animals comprising a reporter construct for producing a detectable amount of a reporter molecule operably linked to a transcriptional regulatory nucleic acid molecule from the human CYP3A4 gene located between the initiation of transcription site of the gene and a position located 13,000 nucleotides upstream from the site. The invention also relates to the use of these animals for determining the effect of a compound, particularly, but not exclusively, a xenobiotic or steroid, on the regulation of expression of the CYP3A4 gene in a human.
    Type: Application
    Filed: August 12, 2010
    Publication date: July 5, 2012
    Applicant: The University of Sydney
    Inventors: Christopher Liddle, Bryan James Goodwin, Graham Robertson
  • Patent number: 8088968
    Abstract: The invention relates to the generation of non-human transgenic animals comprising a reporter construct for producing a detectable amount of a reporter molecule operably linked to a transcriptional regulatory nucleic acid molecule from the human CYP3A4 gene located between the initiation of transcription site of the gene and a position located 13,000 nucleotides upstream from the site. The invention also relates to the use of these animals for determining the effect of a compound, particularly, but not exclusively, a xenobiotic or steroid, on the regulation of expression of the CYP3A4 gene in a human.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 3, 2012
    Assignee: The University of Sydney
    Inventors: Christopher Liddle, Bryan James Goodwin, Graham Robertson
  • Publication number: 20110014126
    Abstract: This application relates to methods of treating, preventing, and ameliorating fibrosis, such as fibrosis of the liver. In particular, the application relates to methods of using a vitamin D receptor agonist (such as vitamin D, vitamin D analogs, vitamin D precursors, and vitamin D receptor agonists precursors) for the treatment of liver fibrosis. Also disclosed are methods for screening for agents that treat, prevent, and ameliorate fibrosis.
    Type: Application
    Filed: May 3, 2010
    Publication date: January 20, 2011
    Inventors: Ronald M. Evans, Michael Downes, Christopher Liddle, Nanthakumar Subramaniam, Caroline Flora Samer