Patents by Inventor Christopher M. Miller
Christopher M. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11914504Abstract: Physical experiments can be performed based on automatically-generated testing scripts according to some examples described herein. For example, a system can generate a sample set based on demand data collected from a group of manufacturing locations. The system can also generate a graphical user interface that includes graphical options through which a user can select settings for a testing script to be used in a physical test environment. The system can receive the settings from the user through the graphical user interface. The system can then generate the testing script based on the sample set and the settings, and provide the testing script for use in executing a physical experiment in the physical test environment.Type: GrantFiled: June 27, 2023Date of Patent: February 27, 2024Assignee: Starbucks CorporationInventors: Rachel J. Espiritusanto, Constance J. Wang, Andrew M. Greenleaf, Christopher M. Miller, Marshall G. Frerichs
-
Patent number: 10773725Abstract: A method includes determining temperature values for roadway areas ahead of a vehicle, determining lubricant state values for the roadway areas, and determining lubricant thickness values for the roadway areas. The method also includes determining a tire-road friction estimate for each of the roadway areas using the temperature values, the lubricant state values, and the lubricant thickness values, and defining a friction map that relates the tire-road friction estimates to the roadway areas. The method also includes determining a motion plan based at least in part on the friction map, and controlling the vehicle based on the motion plan.Type: GrantFiled: August 22, 2018Date of Patent: September 15, 2020Assignee: Apple Inc.Inventors: Filip Ilievski, Matisse J. Milovich, Christopher M. Miller, Budhadipta Dan, Jack E. Graves, Evan C. Cull, Irene Perali, Mira S. Misra, Sheila P. Nabanja, Lucian Ion, James J. Reuther, Christy F. Cull
-
Publication number: 20170136384Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: November 21, 2016Publication date: May 18, 2017Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 9533238Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: December 7, 2015Date of Patent: January 3, 2017Assignee: PURESTREAM SERVICES, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Publication number: 20160082362Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: December 7, 2015Publication date: March 24, 2016Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 9205347Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: September 29, 2014Date of Patent: December 8, 2015Assignee: PURESTREAM SERVICES, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 9044693Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: February 13, 2012Date of Patent: June 2, 2015Assignee: Purestream Services, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 9005404Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: February 13, 2012Date of Patent: April 14, 2015Assignee: Purestream Services, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 8986509Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: February 13, 2012Date of Patent: March 24, 2015Assignee: Purestream Services, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Publication number: 20150014149Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: September 29, 2014Publication date: January 15, 2015Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 8845865Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: GrantFiled: January 31, 2013Date of Patent: September 30, 2014Assignee: Purestream Services, LLCInventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Patent number: 8563111Abstract: Disclosed is a digital information media having an adhesion promotion layer supported on a dummy (L1) substrate that enables secure bonding of the L1 layer, directly or indirectly, to the rest of the stack of layers in the digital information media. Certain materials including metals, metal alloys, or metalloids enhance adhesion between the adhesive layer and the L1. By applying an adhesion promotion layer of such materials on an inner surface of the L1, the bond between the adhesive and the adhesion promotion layer improves bonding and reduces a tendency for the L1 to delaminate from the rest of the stack. The tendency for breakage of the media at the juncture between the adhesion promotion layer and the adhesive is reduced, and incursion of moisture or oxygen through the interface between the adhesion promotion layer and the adhesive is inhibited.Type: GrantFiled: December 29, 2010Date of Patent: October 22, 2013Assignee: Brigham Young UniversityInventors: Matthew R. Linford, Christopher M. Miller
-
Patent number: 8389096Abstract: Optical information media having high pressure-at-break values, and methods for determining pressure-at-break values are disclosed. The media have high structural integrities, and are designed to confer greater resistance to delamination forces as compared to conventional optical information media.Type: GrantFiled: March 24, 2010Date of Patent: March 5, 2013Assignee: Brigham Young UniversityInventors: Michael L. Bailey, Douglas P. Hansen, Barry M. Lunt, Christopher M. Miller
-
Patent number: 8361585Abstract: Optical information media containing encapsulated data layers are disclosed. Selective layering of materials in inner radial, middle radial, and outer radial zones allows for the faces and edges of at least the data layers to be encapsulated by other materials, resulting in increased resistance to harmful environmental agents such as oxygen and moisture.Type: GrantFiled: December 30, 2009Date of Patent: January 29, 2013Inventors: Christopher J. Buntel, Douglas P. Hansen, Matthew R. Linford, Barry M. Lunt, Christopher M. Miller, Raymond T. Perkins, Mark O. Worthington
-
Publication number: 20120205235Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: February 13, 2012Publication date: August 16, 2012Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Publication number: 20120205231Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: February 13, 2012Publication date: August 16, 2012Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Publication number: 20120205232Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.Type: ApplicationFiled: February 13, 2012Publication date: August 16, 2012Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
-
Publication number: 20110158076Abstract: Disclosed is a digital information media having an adhesion promotion layer supported on a dummy (L1) substrate that enables secure bonding of the L1 layer, directly or indirectly, to the rest of the stack of layers in the digital information media. Certain materials including metals, metal alloys, or metalloids enhance adhesion between the adhesive layer and the L1. By applying an adhesion promotion layer of such materials on an inner surface of the L1, the bond between the adhesive and the adhesion promotion layer improves bonding and reduces a tendency for the L1 to delaminate from the rest of the stack. The tendency for breakage of the media at the juncture between the adhesion promotion layer and the adhesive is reduced, and incursion of moisture or oxygen through the interface between the adhesion promotion layer and the adhesive is inhibited.Type: ApplicationFiled: December 29, 2010Publication date: June 30, 2011Applicant: BRIGHAM YOUNG UNIVERSITYInventors: Matthew R. Linford, Christopher M. Miller
-
Publication number: 20100246358Abstract: Optical information media having high pressure-at-break values, and methods for determining pressure-at-break values are disclosed. The media have high structural integrities, and are designed to confer greater resistance to delamination forces as compared to conventional optical information media.Type: ApplicationFiled: March 24, 2010Publication date: September 30, 2010Inventors: Michael L. Bailey, Douglas P. Hansen, Barry M. Lunt, Christopher M. Miller
-
Publication number: 20100182894Abstract: Optical information media containing encapsulated data layers are disclosed. Selective layering of materials in inner radial, middle radial, and outer radial zones allows for the faces and edges of at least the data layers to be encapsulated by other materials, resulting in increased resistance to harmful environmental agents such as oxygen and moisture.Type: ApplicationFiled: December 30, 2009Publication date: July 22, 2010Applicant: BRIGHAM YOUNG UNIVERSITYInventors: Christopher J. Buntel, Douglas P. Hansen, Matthew R. Linford, Barry M. Lunt, Christopher M. Miller, Raymond T. Perkins, Mark O. Worthington