Patents by Inventor Christopher M. Neumann
Christopher M. Neumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240234422Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.Type: ApplicationFiled: March 22, 2024Publication date: July 11, 2024Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH
-
Patent number: 11996411Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.Type: GrantFiled: June 26, 2020Date of Patent: May 28, 2024Assignee: Intel CorporationInventors: Cheng-Ying Huang, Gilbert Dewey, Anh Phan, Nicole K. Thomas, Urusa Alaan, Seung Hoon Sung, Christopher M. Neumann, Willy Rachmady, Patrick Morrow, Hui Jae Yoo, Richard E. Schenker, Marko Radosavljevic, Jack T. Kavalieros, Ehren Mannebach
-
Publication number: 20240153956Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.Type: ApplicationFiled: January 10, 2024Publication date: May 9, 2024Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
-
Publication number: 20240114693Abstract: In one embodiment, an apparatus includes a first metal layer, a second metal layer above the first metal layer, a first metal via generally perpendicular with and connected to the first metal layer, a second metal via generally perpendicular with and connected to the second metal layer, a third metal via generally perpendicular with and extending through the first metal layer and the second metal layer, a ferroelectric material between the third metal via and the first metal layer and between the third metal via and the second metal layer, and a hard mask material around a portion of the first metal via above the first metal layer and the second metal layer, around a portion of the second metal via above the first metal layer and the second metal layer, and around a portion of the ferroelectric material above the first metal layer and the second metal layer.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Christopher M. Neumann, Brian Doyle, Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Uygar E. Avci, Eungnak Han, Manish Chandhok, Nafees Aminul Kabir, Gurpreet Singh
-
Publication number: 20240114694Abstract: Backside integrated circuit capacitor structures. In an example, a capacitor structure includes a layer of ferroelectric material between first and second electrodes. The first electrode can be connected to a transistor terminal by a backside contact that extends downward from a bottom surface of the transistor terminal to the first electrode. The transistor terminal can be, for instance, a source or drain region, and the backside contact can be self-aligned with the source or drain region. The second electrode can be connected to a backside interconnect feature. In some cases, the capacitor has a height that extends through at least one backside interconnect layer. In some cases, the capacitor is a multi-plate capacitor in which the second conductor is one of a plurality of plate line conductors arranged in a staircase structure. The capacitor structure may be, for example, part of a non-volatile memory device or the cache of a processor.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Sourav Dutta, Nazila Haratipour, Uygar E. Avci, Vachan Kumar, Christopher M. Neumann, Shriram Shivaraman, Sou-Chi Chang, Brian S. Doyle
-
Patent number: 11923370Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.Type: GrantFiled: September 23, 2020Date of Patent: March 5, 2024Assignee: Intel CorporationInventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
-
Publication number: 20230197569Abstract: Techniques are provided herein to form semiconductor devices having a frontside and backside contact in an epi region of a stacked transistor configuration. In one example, an n-channel device and a p-channel device may both be GAA transistors where the n-channel device is located vertically above the p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and the p-channel device. Deep and narrow contacts may be formed from both the frontside and the backside of the integrated circuit through the stacked source or drain regions. The contacts may physically contact each other to form a combined contact that extends through an entirety of the stacked source or drain regions. The higher contact area provided to both source or drain regions provides a more robust ohmic contact with a lower contact resistance compared to previous contact architectures.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Gilbert Dewey, Cheng-Ying Huang, Nicole K. Thomas, Marko Radosavljevic, Patrick Morrow, Ashish Agrawal, Willy Rachmady, Seung Hoon Sung, Christopher M. Neumann
-
Publication number: 20230197777Abstract: Techniques are provided herein to form gate-all-around (GAA) semiconductor devices utilizing a metal fill in an epi region of a stacked transistor configuration. In one example, an n-channel device and the p-channel device may both be GAA transistors each having any number of nanoribbons extending in the same direction where the n-channel device is located vertically above the p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and the p-channel device. A metal fill may be provided around the source or drain region of the bottom semiconductor device to provide a high contact area between the highly conductive metal fill and the epitaxial material of that source or drain region. Metal fill may also be used around the top source or drain region to further improve conductivity throughout both of the stacked source or drain regions.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Gilbert Dewey, Cheng-Ying Huang, Nicole K. Thomas, Marko Radosavljevic, Patrick Morrow, Ashish Agrawal, Willy Rachmady, Nazila Haratipour, Seung Hoon Sung, I-Cheng Tung, Christopher M. Neumann, Koustav Ganguly, Subrina Rafique
-
Publication number: 20230126135Abstract: Techniques are provided herein to form a forksheet transistor device with a dielectric overhang structure. The dielectric overhang structure includes a dielectric layer that at least partially hangs over the nanoribbons of each semiconductor device in the forksheet transistor and is directly coupled to, or is an integral part of, the dielectric spine between the semiconductor devices. The overhang structure allows for a higher alignment tolerance when forming different work function metals over each of the different semiconductor devices, which in turn allows for narrower dielectric spines to be used. A first gate structure that includes a first work function metal may be formed around the nanoribbons of the n-channel device and a second gate structure that includes a second work function metal may be formed around the nanoribbons of the p-channel device in the forksheet arrangement.Type: ApplicationFiled: October 25, 2021Publication date: April 27, 2023Applicant: Intel CorporationInventors: Christopher M. Neumann, Ashish Agrawal, Seung Hoon Sung, Marko Radosavljevic, Jack T. Kavalieros
-
Publication number: 20230101111Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional ferroelectric random access memory (3D FRAM) devices with a sense transistor coupled to a plurality of capacitors to (among other things) help improve signal levels and scaling. Other embodiments may be disclosed or claimed.Type: ApplicationFiled: September 24, 2021Publication date: March 30, 2023Inventors: Shriram SHIVARAMAN, Sou-Chi CHANG, Nazila HARATIPOUR, Uygar E. AVCI, Sarah ATANASOV, Jason PECK, Christopher M. NEUMANN
-
Publication number: 20230097641Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, ferroelectric three-dimensional (3D) memory architectures. Other embodiments may be disclosed or claimed.Type: ApplicationFiled: September 24, 2021Publication date: March 30, 2023Inventors: Christopher M. NEUMANN, Nazila HARATIPOUR, Sou-Chi CHANG, Uygar E. AVCI, Shriram SHIVARAMAN
-
Publication number: 20230100860Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to memory devices utilizing dead-layer-free materials to reduce disturb effects. Other embodiments may be described or claimed.Type: ApplicationFiled: September 24, 2021Publication date: March 30, 2023Inventors: Sou-Chi CHANG, Nazila HARATIPOUR, Shriram SHIVARAMAN, Uygar E. AVCI, Sarah ATANASOV, Christopher M. NEUMANN
-
Publication number: 20220093647Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.Type: ApplicationFiled: September 23, 2020Publication date: March 24, 2022Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
-
Publication number: 20210407999Abstract: Embodiments disclosed herein include stacked forksheet transistor devices, and methods of fabricating stacked forksheet transistor devices. In an example, an integrated circuit structure includes a backbone. A first transistor device includes a first vertical stack of semiconductor channels adjacent to an edge of the backbone. A second transistor device includes a second vertical stack of semiconductor channels adjacent to the edge of the backbone. The second transistor device is stacked on the first transistor device.Type: ApplicationFiled: June 26, 2020Publication date: December 30, 2021Inventors: Cheng-Ying HUANG, Gilbert DEWEY, Anh PHAN, Nicole K. THOMAS, Urusa ALAAN, Seung Hoon SUNG, Christopher M. NEUMANN, Willy RACHMADY, Patrick MORROW, Hui Jae YOO, Richard E. SCHENKER, Marko RADOSAVLJEVIC, Jack T. KAVALIEROS, Ehren MANNEBACH
-
Patent number: 9583702Abstract: Provided is a phase change memory device including a graphene layer inserted between a lower electrode into which heat flows and a phase change material layer, to prevent the heat from being diffused to an outside so as to efficiently transfer the heat to the phase change material layer, and a method of fabricating the phase change memory device. The phase change memory device includes a lower electrode; an insulating layer formed to enclose the lower electrode; a graphene layer formed on the lower electrode; a phase change material layer formed on the graphene layer and the insulating layer; and an upper electrode formed on the phase change material layer. Since a phase of the phase change material layer is changed at a small amount of driving current, the phase change memory device is fabricated to have a high driving speed and a high integration.Type: GrantFiled: January 29, 2016Date of Patent: February 28, 2017Assignees: Samsung Electronics Co., Ltd., The Board of Trustees of the Leland Stanford Junior UniversityInventors: Yongsung Kim, Chiyui Ahn, Aditya Sood, Eric Pop, H.-S. Philip Wong, Kenneth E. Goodson, Scott Fong, Seunghyun Lee, Christopher M. Neumann, Mehdi Asheghi
-
Publication number: 20160276585Abstract: Provided is a phase change memory device including a graphene layer inserted between a lower electrode into which heat flows and a phase change material layer, to prevent the heat from being diffused to an outside so as to efficiently transfer the heat to the phase change material layer, and a method of fabricating the phase change memory device. The phase change memory device includes a lower electrode; an insulating layer formed to enclose the lower electrode; a graphene layer formed on the lower electrode; a phase change material layer formed on the graphene layer and the insulating layer; and an upper electrode formed on the phase change material layer. Since a phase of the phase change material layer is changed at a small amount of driving current, the phase change memory device is fabricated to have a high driving speed and a high integration.Type: ApplicationFiled: January 29, 2016Publication date: September 22, 2016Inventors: Yongsung Kim, Chiyui Ahn, Aditya Sood, Eric Pop, H.S. Philip Wong, Kenneth E. Goodson, Scott Fong, Seunghyun Lee, Christopher M. Neumann, Mehdi Asheghi