Patents by Inventor Christopher Mader

Christopher Mader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883535
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 30, 2024
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20210052497
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 25, 2021
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Patent number: 10792251
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: October 6, 2020
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20200022913
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: January 8, 2019
    Publication date: January 23, 2020
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Patent number: 10182988
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 22, 2019
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20160310425
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: December 3, 2014
    Publication date: October 27, 2016
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-morena, Christopher Mader