Patents by Inventor Christopher Meszaros
Christopher Meszaros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240332672Abstract: A battery cell cooling system includes a housing including an inlet configured to receive a coolant and an outlet configured to discharge the coolant, the housing defining a plurality of slots between the inlet and the outlet, each of the plurality of slots being spaced apart from adjacent slots, and a plurality of battery cells disposed in the plurality of slots, wherein the coolant is configured to flow from the inlet, through the spaces between plurality of slots, and to the outlet.Type: ApplicationFiled: March 25, 2024Publication date: October 3, 2024Inventors: Christopher Meszaros, Mihally Gaspar, Peter Kurucz, Adam Dendrinos
-
Patent number: 11060466Abstract: A system and method is provided for controlling an electric machine rotatably coupled to a rotatable shaft of an electronically-controlled one of a turbocharger and an exhaust-driven turbo supercharger fluidly coupled to an exhaust duct of an internal combustion engine. An operating temperature of a component of the engine is determined or estimated an operating temperature of a component of the engine or coupled to the engine, which is compared to a threshold temperature. The electric machine is controlled to operate as a motor in response to the determined or estimated temperature of the component being below a threshold temperature.Type: GrantFiled: March 14, 2019Date of Patent: July 13, 2021Assignee: BorgWarner Inc.Inventors: Tyler R. Garrard, Christopher Meszaros
-
Publication number: 20200032653Abstract: An electronically-controlled turbocharger (ECT) includes a shaft having a turbine wheel affixed thereto at or adjacent to one end thereof, a retaining feature in the form of a shoulder or a plurality of splines defined radially about the shaft between the turbine wheel and an end of the shaft opposite the one end thereof, a rotor of an electric motor received on the shaft with one end of the rotor facing the turbine wheel configured complementary to and engaging with the retaining feature, and a retaining element affixed to the shaft and abutting the rotor on an end of the rotor opposite the one end thereof.Type: ApplicationFiled: July 8, 2019Publication date: January 30, 2020Inventors: Tyler Garrard, Christopher Meszaros, Will Robert Nielsen Hippen
-
Publication number: 20190211759Abstract: A system and method is provided for controlling an electric machine rotatably coupled to a rotatable shaft of an electronically-controlled one of a turbocharger and an exhaust-driven turbo supercharger fluidly coupled to an exhaust duct of an internal combustion engine. An operating temperature of a component of the engine is determined or estimated an operating temperature of a component of the engine or coupled to the engine, which is compared to a threshold temperature. The electric machine is controlled to operate as a motor in response to the determined or estimated temperature of the component being below a threshold temperature.Type: ApplicationFiled: March 14, 2019Publication date: July 11, 2019Inventors: Tyler R. Garrard, Christopher Meszaros
-
Patent number: 10309300Abstract: By relieving the shaft of an electronically-controlled turbocharger (ECT) in a central region of where a rotor of an electric machine couples with the shaft eases assembly of the electric machine onto the shaft. On either side of the relieved section, the fit between the shaft and the rotor may be a slip fit or an interference fit. Alternatively, the rotor is relieved in a central section. In some embodiments, the shaft is welded to the rotor. In yet other embodiments, the outside of the shaft and the inside of the rotor are threaded with a nut or a pin to secure the shaft to the rotor or the rotor itself has threads to engage with threads on the shaft. Such arrangements ease assembly and allow adjustment of dynamic characteristics of the rotor system.Type: GrantFiled: February 20, 2014Date of Patent: June 4, 2019Assignee: BorgWarner Inc.Inventors: Tyler Garrard, Will Robert Nielsen Hippen, Christopher Meszaros
-
Patent number: 9906102Abstract: It is common in electric machines to use the housing as a heat sink to remove energy from the electric machine. In some applications, however, the housing receives energy from a hot element. For example, in an electronically controlled turbocharger, the very hot turbine housing radiates and conducts energy to the electric machine housing exacerbating the heating within the electric machine. To reduce the heat transfer into the electric machine, a gap is provided between the stator and the housing outside the stator. In one alternative, the gap is filled with an insulating material. In another embodiment, the gap is an air gap with the stator located within the housing by circumferential rings or axial rods in corresponding grooves. In yet another embodiment, coolant is provided to the gap at the top and drained away at the bottom under the action of gravity.Type: GrantFiled: March 2, 2015Date of Patent: February 27, 2018Assignee: BorgWarner Inc.Inventors: Will Robert Nielsen Hippen, Christopher Meszaros, Tyler Garrard, Diana Brehob
-
Publication number: 20180030988Abstract: A turbocharger includes a housing, a shaft received therein, a turbine wheel affixed to the shaft at or adjacent to a first end thereof, a compressor wheel affixed to the shaft at or adjacent to a second, opposite end thereof, a first bearing received on the shaft between the turbine wheel and the compressor wheel, and a second bearing received on the shaft between the first bearing and the compressor wheel. One of the first and second bearings is floating relative to the shaft and affixed to the housing, and the other is floating relative to the shaft and also floating relative to the housing.Type: ApplicationFiled: February 9, 2016Publication date: February 1, 2018Inventors: Tyler R. GARRARD, Will R. HIPPEN, Christopher MESZAROS
-
Patent number: 9780625Abstract: Performance of an electric motor can be improved if coolant is provided to the coils of the stator. An electric motor is disclosed that has a shaft onto which the rotor is secured. The motor has a stator that is mounted on bearings that are mounted on the shaft. The stator has a plurality of coils. A coolant guide is provided that fills voids between the groups of windings. The coolant guide has a plurality of fingers with the fingers arranged between adjacent pairs of coils. The coolant guide has internal passages to accept pressurized coolant and outlet holes to spray coolant onto the coils. In other embodiments, the fingers guide coolant to reach all coils under the force of gravity.Type: GrantFiled: January 15, 2015Date of Patent: October 3, 2017Assignee: BorgWarner Inc.Inventors: Tyler Garrard, Christopher Meszaros, Will Robert Nielsen Hippen
-
Patent number: 9664050Abstract: An electronically-controlled turbocharger (ECT) includes a rotor (of an electric motor) on the shaft of the turbomachine. There are a variety of embodiments for securing the rotor onto the shaft including, but not limited to: having a taper on both the shaft on the rotor and using a nut engaging with threads in the shaft to put the two tapers together; a press fit; splines and grooves also using a nut; and a shoulder on the shaft that the rotor abuts when a nut is engaged with threads on the shaft. To accommodate these retaining features, the diameter of the shaft is greater near the turbine end of the shaft. A first bearing installed on the shaft near the turbine end of the shaft has a larger inside diameter than a second bearing installed on the other side of the rotor.Type: GrantFiled: September 11, 2014Date of Patent: May 30, 2017Assignee: EcoMotors, Inc.Inventors: Will Robert Nielsen Hippen, Christopher Meszaros, Tyler Garrard
-
Publication number: 20160237823Abstract: An electronically-controlled turbocharger (ECT) includes an electric machine provided on the shaft of the turbomachine. It is desirable to mount the electric machine on the shaft in such a way that it can be removed for servicing. Disclosed herein is an ECT in which the rotor of the electric machine is retained on the shaft by a nut that is used to snug up the rotor against a shoulder on the shaft. Alternatively, the shaft and the rotor have a taper and the nut is used to cause the interior taper of the rotor is caused to engage with the exterior taper of the shaft. In yet another alternative, the rotor has fingers that engage with splines on the shaft. In some embodiments, to help prevent relative rotation of the shaft and the rotor, one or both of mating surfaces are roughened to increase the friction between the surfaces.Type: ApplicationFiled: October 25, 2014Publication date: August 18, 2016Applicant: EcoMotors, Inc.Inventors: Tyler GARRARD, Christopher MESZAROS, Will Robert Nielson HIPPEN
-
Patent number: 9401630Abstract: In an electric machine, there may be lubrication and cooling needs, such as lubricating bearings and cooling coils of the electric machine. When lubricant is used for both, it is desirable to prioritize the lubrication to the bearings. By providing check valves between a pressurized oil manifold and the cooling coils, lubricant is diverted to the coils only when pressure in the system is sufficient to satisfy both lubrication and cooling. In some embodiments, an oil gallery is provided on an outside surface of a back iron of the stator of the electric machine and orifices are provided in the back iron so that oil drips onto the coils of the electric motor. In some embodiments, the current commanded to the electric motor is based on whether or not lubricant (or other coolant) is being provided to the coils.Type: GrantFiled: August 23, 2013Date of Patent: July 26, 2016Assignee: EcoMotors, Inc.Inventors: Tyler Garrard, Will Robert Nielsen Hippen, Christopher Meszaros, Diana Brehob
-
Publication number: 20160003140Abstract: By relieving the shaft of an electronically-controlled turbocharger (ECT) in a central region of where a rotor of an electric machine couples with the shaft eases assembly of the electric machine onto the shaft. On either side of the relieved section, the fit between the shaft and the rotor may be a slip fit or an interference fit. Alternatively, the rotor is relieved in a central section. In some embodiments, the shaft is welded to the rotor. In yet other embodiments, the outside of the shaft and the inside of the rotor are threaded with a nut or a pin to secure the shaft to the rotor or the rotor itself has threads to engage with threads on the shaft. Such arrangements ease assembly and allow adjustment of dynamic characteristics of the rotor system.Type: ApplicationFiled: February 20, 2014Publication date: January 7, 2016Inventors: Tyler GARRARD, Will Robert Nielson HIPPEN, Christopher Meszaros
-
Publication number: 20150256051Abstract: It is common in electric machines to use the housing as a heat sink to remove energy from the electric machine. In some applications, however, the housing receives energy from a hot element. For example, in an electronically controlled turbocharger, the very hot turbine housing radiates and conducts energy to the electric machine housing exacerbating the heating within the electric machine. To reduce the heat transfer into the electric machine, a gap is provided between the stator and the housing outside the stator. In one alternative, the gap is filled with an insulating material. In another embodiment, the gap is an air gap with the stator located within the housing by circumferential rings or axial rods in corresponding grooves. In yet another embodiment, coolant is provided to the gap at the top and drained away at the bottom under the action of gravity.Type: ApplicationFiled: March 2, 2015Publication date: September 10, 2015Inventors: Will Robert Nielsen Hippen, Christopher Meszaros, Tyler Garrard, Diana Brehob
-
Publication number: 20150207386Abstract: Performance of an electric motor can be improved if coolant is provided to the coils of the stator. An electric motor is disclosed that has a shaft onto which the rotor is secured. The motor has a stator that is mounted on bearings that are mounted on the shaft. The stator has a plurality of coils. A coolant guide is provided that fills voids between the groups of windings. The coolant guide has a plurality of fingers with the fingers arranged between adjacent pairs of coils. The coolant guide has internal passages to accept pressurized coolant and outlet holes to spray coolant onto the coils. In other embodiments, the fingers guide coolant to reach all coils under the force of gravity.Type: ApplicationFiled: January 15, 2015Publication date: July 23, 2015Inventors: Tyler Garrard, Christopher Meszaros, Will Robert Nielsen Hippen
-
Publication number: 20150118044Abstract: An electronically-controlled turbocharger (ECT) includes a rotor (of an electric motor) on the shaft of the turbomachine. There are a variety of embodiments for securing the rotor onto the shaft including, but not limited to: having a taper on both the shaft on the rotor and using a nut engaging with threads in the shaft to put the two tapers together; a press fit; splines and grooves also using a nut; and a shoulder on the shaft that the rotor abuts when a nut is engaged with threads on the shaft. To accommodate these retaining features, the diameter of the shaft is greater near the turbine end of the shaft. A first bearing installed on the shaft near the turbine end of the shaft has a larger inside diameter than a second bearing installed on the other side of the rotor.Type: ApplicationFiled: September 11, 2014Publication date: April 30, 2015Inventors: Will Robert Nielsen Hippen, Christopher Meszaros, Tyler Garrard
-
Publication number: 20140056726Abstract: In an electric machine, there may be lubrication and cooling needs, such as lubricating bearings and cooling coils of the electric machine. When lubricant is used for both, it is desirable to prioritize the lubrication to the bearings. By providing check valves between a pressurized oil manifold and the cooling coils, lubricant is diverted to the coils only when pressure in the system is sufficient to satisfy both lubrication and cooling. In some embodiments, an oil gallery is provided on an outside surface of a back iron of the stator of the electric machine and orifices are provided in the back iron so that oil drips onto the coils of the electric motor. In some embodiments, the current commanded to the electric motor is based on whether or not lubricant (or other coolant) is being provided to the coils.Type: ApplicationFiled: August 23, 2013Publication date: February 27, 2014Applicant: EcoMotors, Inc.Inventors: Tyler Garrard, Will Robert Nielsen Hippen, Christopher Meszaros, Diana Brehob
-
Publication number: 20140056721Abstract: Peak performance of an electric motor can be enhanced by effective cooling of windings of the stator to avoid overheating. A liquid coolant is effective at cooling the stator; but in high-speed motors, it is advisable to avoid allowing coolant on the rotor to avoid high frictional losses. A shield provided in the air gap between the rotor and the stator guides the coolant back to a sump without gaining access to the rotor. Furthermore, if the electric machine is proximate a high temperature component, the shield may further prevent radiative and conductive heat transfer to the electric machine.Type: ApplicationFiled: August 23, 2013Publication date: February 27, 2014Applicant: EcoMotors, Inc.Inventors: Tyler Garrard, Will Robert Nielsen Hippen, Christopher Meszaros