Patents by Inventor Christopher Mieney

Christopher Mieney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872768
    Abstract: An MFD is disclosed. For example, the MFD includes a color printhead to dispense color printing fluid, an enhancement printhead to dispense a three-dimensional (3D) print material, a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include printing a two-dimensional (2D) image on a substrate and printing a 3D object on the 2D image printed on the substrate such that colors of the 2D image provide a desired color for a desired portion of the 3D object.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: January 16, 2024
    Assignee: Xerox Corporation
    Inventors: Stuart A. Schweid, Martin L. Frachioni, David A. Vankouwenberg, Christopher Mieney
  • Patent number: 11650766
    Abstract: An apparatus is disclosed that automatically generates a set of recommended printer settings 300 for a print job 100 submitted to a printer 10.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: May 16, 2023
    Assignee: XEROX CORPORATION
    Inventors: David A Vankouwenberg, Martin L Frachioni, David M Gurak, Christopher Mieney, Stuart A Schweid
  • Publication number: 20230124454
    Abstract: An apparatus is disclosed that automatically generates a set of recommended printer settings 300 for a print job 100 submitted to a printer 10.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 20, 2023
    Applicant: Xerox Corporation
    Inventors: DAVID A. VANKOUWENBERG, MARTIN L. FRACHIONI, DAVID M. GURAK, CHRISTOPHER MIENEY, STUART A. SCHWEID
  • Publication number: 20230079723
    Abstract: An MFD is disclosed. For example, the MFD includes a color printhead to dispense color printing fluid, an enhancement printhead to dispense a three-dimensional (3D) print material, a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include printing a two-dimensional (2D) image on a substrate and printing a 3D object on the 2D image printed on the substrate such that colors of the 2D image provide a desired color for a desired portion of the 3D object.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 16, 2023
    Inventors: Stuart A. Schweid, Martin L. Frachioni, David A. Vankouwenberg, Christopher Mieney
  • Patent number: 11483435
    Abstract: A method is disclosed. For example, the method executed by a processor of a multi-function device (MFD) includes tracking a machine state of the MFD, predicting a potential defect based on a determination that the machine state is associated with a defect class of a plurality of different defect classes, determining a maintenance routine associated with the defect class, and executing the maintenance routine to prevent the potential defect.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: October 25, 2022
    Assignee: Xerox Corporation
    Inventors: Stuart A. Schweid, Martin L. Frachioni, David A. Vankouwenberg, David M. Gurak, Christopher Mieney
  • Patent number: 11376839
    Abstract: Examples of the preferred embodiments use an ink quantity metric (e.g., lightness L*, darkness, image density, line width) of printed content to determine thickness of fountain solution applied by a fountain solution applicator on an imaging member surface and/or determine image forming device real-time image forming modifications for subsequent printings. For example, in real-time during the printing of a print job, a sensor (e.g., spectrometer) may measure the ink quantity metric of the current printing on print substrate. Based on this measurement of printed content output from the image forming device, the image forming device may adjust image forming (e.g., fountain solution deposition flow rate) to reach or maintain a preferred fountain solution thickness on the imaging member surface for subsequent (e.g., next) printings of the print job.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 5, 2022
    Assignee: Xerox Corporation
    Inventors: Martin L. Frachioni, Christopher Mieney, David A. Vankouwenberg, David M. Gurak, Stuart A. Schweid
  • Publication number: 20220201129
    Abstract: A method is disclosed. For example, the method executed by a processor of a multi-function device (MFD) includes tracking a machine state of the MFD, predicting a potential defect based on a determination that the machine state is associated with a defect class of a plurality of different defect classes, determining a maintenance routine associated with the defect class, and executing the maintenance routine to prevent the potential defect.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Stuart A. Schweid, Martin L. Frachioni, David A. Vankouwenberg, David M. Gurak, Christopher Mieney
  • Patent number: 11320737
    Abstract: According to aspects of the embodiments, there is provided a method of measuring the amount of fountain solution using a hot wire anemometer. Fountain solution thickness is measured using the flow rate of vaporized fountain solution and comparing to baseline air only flow rate. The vaporized measurement is correlated with the baseline utilizing specific heat, density and enthalpy values and keeping velocity of fluid constant. Changes in the measurement will then be related to the specific heat, density and enthalpy. Density can be back calculated to yield volume and knowing the area of the image being printed give a real time thickness value.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: May 3, 2022
    Assignee: Xerox Corporation
    Inventors: Christopher Mieney, David A. Vankouwenberg, Martin L. Frachioni, David M. Gurak, Stuart A. Schweid
  • Patent number: 11318760
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a heater, a media transport belt cooler, and a media transport belt. The media transport belt is configured to move substrates past the heater after ink images have been formed on the substrates and the media transport belt cooler is positioned to remove heat energy from the media transport belt after the media transport belt has passed the heater and the substrates have separated from the media transport belt. The substrate cooler is configured to reduce a temperature of the media transport belt to a temperature that attenuates image defects arising from temperature differentials in the media transport belt when the media transport belt is opposite the heater.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: May 3, 2022
    Assignee: Xerox Corporation
    Inventors: Linn C. Hoover, Douglas K Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Chu-heng Liu, Santokh S. Badesha, Christopher Mieney, David S. Derleth
  • Publication number: 20210402755
    Abstract: Examples of the preferred embodiments use an ink quantity metric (e.g., lightness L*, darkness, image density, line width) of printed content to determine thickness of fountain solution applied by a fountain solution applicator on an imaging member surface and/or determine image forming device real-time image forming modifications for subsequent printings. For example, in real-time during the printing of a print job, a sensor (e.g., spectrometer) may measure the ink quantity metric of the current printing on print substrate. Based on this measurement of printed content output from the image forming device, the image forming device may adjust image forming (e.g., fountain solution deposition flow rate) to reach or maintain a preferred fountain solution thickness on the imaging member surface for subsequent (e.g., next) printings of the print job.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Martin L. FRACHIONI, Christopher MIENEY, David A. VANKOUWENBERG, David M. GURAK, Stuart A. SCHWEID
  • Publication number: 20210187968
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a heater, a media transport belt cooler, and a media transport belt. The media transport belt is configured to move substrates past the heater after ink images have been formed on the substrates and the media transport belt cooler is positioned to remove heat energy from the media transport belt after the media transport belt has passed the heater and the substrates have separated from the media transport belt. The substrate cooler is configured to reduce a temperature of the media transport belt to a temperature that attenuates image defects arising from temperature differentials in the media transport belt when the media transport belt is opposite the heater.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Inventors: Linn C. Hoover, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Chu-heng Liu, Santokh S. Badesha, Christopher Mieney, David S. Derleth
  • Patent number: 10821747
    Abstract: A printer includes a drying unit that has a vacuum plenum and a drying belt with an exterior surface along which the media is transported through the drying unit. The drying belt has a plurality of holes extending through the drying belt, each hole in the plurality of holes having a diameter that is less than 300 microns. The drying unit further includes a heater configured to heat the media transported through the drying unit and a vacuum blower operably connected to the vacuum plenum. The vacuum blower is configured to generate a negative pressure in the vacuum plenum that holds the media on the exterior surface of the drying belt by the negative pressure acting through the plurality of holes without producing temperature differentials in the media on the belt that result in noticeable image quality defects.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 3, 2020
    Assignee: Xerox Corporation
    Inventors: Christopher Mieney, David S. Derleth, Santokh S. Badesha
  • Publication number: 20200230660
    Abstract: A system, method and apparatus for in-situ cleaning comprises a shower configured to dispense cleaning solution on a belt in a rendering device a dryer configured down line from the shower; a cleaning roller configured to engage a transport roller associated with the belt and a control system for controlling operations thereof.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Inventors: Peter J. Nystrom, Christopher Mieney, David VanKouwenberg, Mark A. Cellura