Patents by Inventor Christopher P. D'Emic

Christopher P. D'Emic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10236366
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20180315591
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 1, 2018
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Patent number: 10056251
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 21, 2018
    Assignee: International Business Machines Corporation
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Publication number: 20180108763
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9887278
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9691886
    Abstract: A method of forming a semiconductor structure includes providing an emitter and a collector on a surface of an insulator layer. The emitter and the collector are spaced apart and have a doping of a first conductivity type. An intrinsic base is formed between the emitter and the collector and on the insulator layer by epitaxially growing the intrinsic base from at least a vertical surface of the emitter and a vertical surface of the collector. The intrinsic base has a doping of a second conductivity type opposite to the first conductivity type, and a first heterojunction exists between the emitter and the intrinsic base and a second heterojunction exists between the collector and the intrinsic base.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: June 27, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9647099
    Abstract: A method of forming a semiconductor structure includes providing an emitter and a collector on a surface of an insulator layer. The emitter and the collector are spaced apart and have a doping of a first conductivity type. An intrinsic base is formed between the emitter and the collector and on the insulator layer by epitaxially growing the intrinsic base from at least a vertical surface of the emitter and a vertical surface of the collector. The intrinsic base has a doping of a second conductivity type opposite to the first conductivity type, and a first heterojunction exists between the emitter and the intrinsic base and a second heterojunction exists between the collector and the intrinsic base.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 9, 2017
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20170092749
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 30, 2017
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20170092483
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Can Bayram, Christopher P. D'Emic, Devendra K. Sadana, Jeehwan Kim
  • Patent number: 9601583
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: March 21, 2017
    Assignee: ARMONK BUSINESS MACHINES CORPORATION
    Inventors: Can Bayram, Christopher P. D'Emic, Jeehwan Kim, Devendra K. Sadana
  • Publication number: 20160300935
    Abstract: A method of forming a semiconductor structure includes providing an emitter and a collector on a surface of an insulator layer. The emitter and the collector are spaced apart and have a doping of a first conductivity type. An intrinsic base is formed between the emitter and the collector and on the insulator layer by epitaxially growing the intrinsic base from at least a vertical surface of the emitter and a vertical surface of the collector. The intrinsic base has a doping of a second conductivity type opposite to the first conductivity type, and a first heterojunction exists between the emitter and the intrinsic base and a second heterojunction exists between the collector and the intrinsic base.
    Type: Application
    Filed: December 30, 2015
    Publication date: October 13, 2016
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20160300934
    Abstract: A method of forming a semiconductor structure includes providing an emitter and a collector on a surface of an insulator layer. The emitter and the collector are spaced apart and have a doping of a first conductivity type. An intrinsic base is formed between the emitter and the collector and on the insulator layer by epitaxially growing the intrinsic base from at least a vertical surface of the emitter and a vertical surface of the collector. The intrinsic base has a doping of a second conductivity type opposite to the first conductivity type, and a first heterojunction exists between the emitter and the intrinsic base and a second heterojunction exists between the collector and the intrinsic base.
    Type: Application
    Filed: April 13, 2015
    Publication date: October 13, 2016
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20160087068
    Abstract: A method of forming a base extension region for a lateral bipolar transistor. The base extension region may include forming an extrinsic base on an intrinsic base layer, the intrinsic base layer is on an insulator layer, a top portion of the intrinsic base layer is exposed on opposite sides of the extrinsic base; forming a base extension region by recessing the exposed top portion of the intrinsic base layer to a recessed surface, the recessed surface is above a top surface of the insulator layer, the base extension region is a region of the intrinsic base layer remaining above the recessed surface; and forming an emitter/collector in the intrinsic base layer, an intrinsic base is a portion of the intrinsic base layer between the emitter/collector, the emitter/collector is a distance from the extrinsic base of no less than a thickness of the base extension region.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau, Joonah Yoon
  • Publication number: 20160020283
    Abstract: A hetero-integrated device includes a monocrystalline Si substrate and a trench formed in the substrate to expose a crystal surface at a bottom of the trench. Sidewall dielectric spacers are formed on sidewalls of the trench, and a III-V material layer is formed on the crystal surface at the bottom of the trench and is isolated from the sidewalls of the trench by the sidewall dielectric spacers.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 21, 2016
    Inventors: Can Bayram, Christopher P. D'Emic, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 9110014
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 18, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 9103770
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20150137191
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: December 12, 2014
    Publication date: May 21, 2015
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8999739
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8994077
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20150014752
    Abstract: A thin body field effect transistor (FET) nanopore sensor includes a silicon on insulator (SOI) structure having an annular shape and comprising a source, a drain and a thin body channel interposed therebetween. A nanopore is formed in a central opening of the SOI structure. A gate dielectric is disposed on the SOI structure insulating the SOI structure from a liquid gate within the nanopore. A back gate is formed around the SOI structure. A shallow trench isolation (STI) layer is formed between the SOI structure and the back gate.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: CHRISTOPHER P. D'EMIC, RAMACHANDRAN MURALIDHAR, PHILIP J. OLDIGES, SUFI ZAFAR