Patents by Inventor Christopher P. Eppig

Christopher P. Eppig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210223157
    Abstract: A method of determining the identity of a petroleum coke sample including obtaining a nuclear magnetic resonance (NMR) measurement of the sample, determining a relaxation decay value of a fluid in the sample from the NMR measurement, comparing the relaxation decay value to relaxation decay values of known petroleum coke materials in a reference group to determine whether the petroleum coke is one of the known materials.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 22, 2021
    Inventors: Qiangyi LI, Christopher P. EPPIG, Derrick P. GREEN
  • Patent number: 9139781
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. Bernatz, Michael Siskin, Christopher P. Eppig, Craig Y. Sabottke, Eric W. Fryatt
  • Patent number: 8496805
    Abstract: Petroleum cokes derived from extra-heavy crude sources can be made more amenable to quenching by adding water or a water/light oil mixture to the coker feed downstream of the furnace. The coke product resulting from this addition of normally volatile liquids to the hot coker feed is still relatively dense but is more friable and usually is in a compact, relatively free-flowing, granular form. The coke is more amenable to uniform quenching in the drum and so can be cut and discharged with a reduced risk of eruptions and a reduced risk of fires in the coke pit or when the coke is subsequently handled and transported.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 30, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Fritz A. Bernatz, Eric W. Fryatt, Christopher P. Eppig, Jordan K. Lambert
  • Patent number: 8101066
    Abstract: An improved fluidized coking process wherein an effective amount of a basic material, preferably an alkali or alkaline-earth metal-containing compound, is added to the coking zone to mitigate agglomeration of the coke during the coking of a heavy hydrocarbonaceous feedstock to produce lower boiling products.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: January 24, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Simon R. Kelemen, Christopher P. Eppig
  • Patent number: 7914668
    Abstract: The invention relates to a thermal conversion process for continuously producing hydrocarbon vapor and continuously removing a free-flowing coke. The coke, such as a shot coke, can be withdrawn continuously via, e.g., a staged lock hopper system.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 29, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Glen E. Phillips, Te-Hung Chen, Charles J. Mart
  • Publication number: 20110005911
    Abstract: The morphology of petroleum cokes produced by the delayed coking of feeds produced from extra-heavy crude sources such as those from the Venezuela Orinoco Heavy Oil Belt can be controlled to produce a less dense coke which is less likely to inflame in the coke pit or in subsequent handling. An aqueous solution of an alkali metal or alkaline earth metal carbonate salt when added to a feed of this type which would normally produce a dense coke product is effective to produce a quenchable coke product of lower density and higher porosity, usually in compact, granular form permitting it to be readily discharged from the drum.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 13, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Fritz A. BERNATZ, Michael SISKIN, Christopher P. EPPIG, Craig Y. SABOTTKE, Eric W. FRYATT
  • Patent number: 7736470
    Abstract: Described herein are methods and mechanisms for laterally dispensing fluid to a coke drum in a predictable and maintainable manner that alleviates thermal stress. In one embodiment, the methods and mechanisms utilize a split piping system to dispense fluid through two or more inlets into a spool that is connected to a coke drum and a coke drum bottom deheader valve. A combination of block valves and clean out ports provides a more effective means to clean the lines and allows fluid to be laterally dispensed in a controllable and predictable manner. The fluid is preferably introduced to the spool in opposing directions toward a central vertical axis of the spool at equal but opposing angles ranging from minus thirty (?30) to thirty (30) degrees relative to a horizontal line laterally bisecting the spool. Alternatively, however, fluid can be introduced to the spool tangentially.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: June 15, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Te-Hung Chen, Christopher P. Eppig, Timothy M. Healy, Scott F. Massenzio, Robert W. Mosley, Rutton D. Patel
  • Patent number: 7727382
    Abstract: A method for producing and removing coke which has bulk morphology such that at least about 30 volume percent is free-flowing under the force of gravity or hydrostatic forces from a delayed coker drum. At the completion of the fill cycle, the coker drum, filled with hot coke, is cooled by steaming and then flooding it with water, thereby producing a coke/water mixture. The coke/water mixture is released from the coke drum through one or more drum closure/discharge throttling systems near the bottom of the coker drum.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: June 1, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Steven W. Sparks, Te-Hung Chen, Christopher P. Eppig, Michael Siskin
  • Patent number: 7645375
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably shot coke. A coker feedstock, such as a vacuum residuum, is heated in a heating zone to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A low molecular weight additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 12, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Varadaraj, Michael Siskin, Leo D. Brown, Christopher P. Eppig, Cornelius H. Brons
  • Patent number: 7537686
    Abstract: A method for upgrading heavy oils by contacting the heavy oil with an inhibitor additive and then thermally treating the inhibitor additized heavy oil. The invention also relates to the upgraded product from the inhibitor enhanced thermal treatment process.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 26, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Varadaraj, Christopher P. Eppig, Douglas W. Hissong, Robert C. Welch
  • Publication number: 20080179165
    Abstract: Described herein are methods and mechanisms for laterally dispensing fluid to a coke drum in a predictable and maintainable manner that alleviates thermal stress. In one embodiment, the methods and mechanisms utilize a split piping system to dispense fluid through two or more inlets into a spool that is connected to a coke drum and a coke drum bottom deheader valve. A combination of block valves and clean out ports provides a more effective means to clean the lines and allows fluid to be laterally dispensed in a controllable and predictable manner. The fluid is preferably introduced to the spool in opposing directions toward a central vertical axis of the spool at equal but opposing angles ranging from minus thirty (?30) to thirty (30) degrees relative to a horizontal line laterally bisecting the spool. Alternatively, however, fluid can be introduced to the spool tangentially.
    Type: Application
    Filed: March 12, 2007
    Publication date: July 31, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Te-Hung Chen, Christopher P. Eppig, Timothy M. Healy, Scott F. Massenzio, Robert W. Mosley, Rutton D. Patel
  • Publication number: 20080135456
    Abstract: An improved fluidized coking process wherein an effective amount of a basic material, preferably an alkali or alkaline-earth metal-containing compound, is added to the coking zone to mitigate agglomeration of the coke during the coking of a heavy hydrocarbonaceous feedstock to produce lower boiling products.
    Type: Application
    Filed: November 27, 2007
    Publication date: June 12, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Simon R. Kelemen, Christopher P. Eppig
  • Patent number: 7374665
    Abstract: A method of blending delayed coker feedstocks to produce a coke that is easier to remove from a coker drum. A first feedstock is selected having less than about 250 wppm dispersed metals content and greater than about 5.24 API gravity. A second delayed coker feedstock is blended with said first resid feedstock so that the total dispersed metals content of the blend will be greater than about 250 wppm and the API gravity will be less than about 5.24.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 20, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher P. Eppig, Michael Siskin, Fritz A. Bernatz, Charles J. Mart
  • Patent number: 7306713
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Patent number: 7303664
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably shot coke. A coker feedstock, such as a vacuum residuum, is heated in a heating zone to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Publication number: 20040262198
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 30, 2004
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Publication number: 20040256292
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Application
    Filed: May 14, 2004
    Publication date: December 23, 2004
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Patent number: 6153088
    Abstract: A process for the production of aromatic hydrocarbons. The process involves heating gas oil while under pressure, and maintaining the gas oil at temperature and pressure to break the substantially aliphatic chains from the gas oil core structure of two or more aromatic rings, as well as to break the aliphatic chains to smaller molecules. The process yields products which include lighter aliphatic material, as well as aromatic hydrocarbons.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: November 28, 2000
    Inventors: Stephen C. Paspek, Jeffrey B. Hauser, Christopher P. Eppig
  • Patent number: 5675043
    Abstract: A process for the removal of nitrogen-containing compounds from a hydrocarbon blend using a solvent with a liquid-phase density at 25.degree. C. not less than 0.90 g/cm.sup.3, and a Hansen polar solubility parameter .delta..sub.P, and a Hansen hydrogen bonding parameter .delta..sub.H, such that at 25.degree. C.9.0(Cal/cm.sup.3).sup.1/2 <(.delta..sub.P +.delta..sub.H)<28.0(Cal/cm.sup.3).sup.1/2.The process is useful for purifying feedstocks to catalytic conversion processes, particularly etherification processes used in the production of ether-rich additives for gasoline.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: October 7, 1997
    Inventors: Christopher P. Eppig, E. T. Robinson, Paul Greenough
  • Patent number: 5318697
    Abstract: This invention relates to a process for upgrading a hydrocarbonaceous material to a product having a lower boiling point than the initial boiling point of said hydrocarbonaceous material and/or a higher boiling point than the final boiling point of said hydrocarbonaceous material, the process comprising heating a feed composition comprising said hydrocarbonaceous material in an enclosed space in the absence of externally supplied water or hydrogen at a temperature in the range of about 750.degree. F. to about 1300.degree. F. and a pressure sufficient to maintain the specific gravity of the contents of said enclosed space in the range of about 0.05 to about 1.5 for an effective period of time to yield said product, said feed composition being characterized by the absence of aromatic compounds with boiling points at atmospheric pressure below about 350.degree. F.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: June 7, 1994
    Assignee: The Standard Oil Company
    Inventors: Stephen C. Paspek, Jeffrey B. Hauser, Christopher P. Eppig, Harry A. Adams